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Abstract

The present master thesis studies the use of RGB and depth cameras to capture and render a
scene. A pair of calibrated RGB and depth camera provides a coloured point cloud. Using several
calibrated camera pairs around a scene gives information on the captured objects shape. This master
thesis seeks to set up such a capture system and render the data in a realistic way. The rendering of
point clouds implies several issues. The observer should not be able to see through an object surface
and the colours must be consistent. Di�erent techniques are applied and compared to solve those
issues. An interpolation technique to �ll the holes between the points gives satisfying results for an
o�-line rendering, while representing the point cloud as a cloud of quads of varying sizes is a good
solution for a real-time rendering. To colour the �nal point cloud, the information of several colour
cameras can be used for a more natural illumination of the scene.

Keywords: Kinect, Depth sensor, Point cloud, Joint calibration, image-based rendering, Plenoptic
sampling, Unreal engine 4
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Levenberg�Marquardt Algorithm Algorithm used to solve non-linear least squares problems. 12
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LMA Levenberg�Marquardt Algorithm 12, 13

PCA Principal Component Analysis 12

Plenoptic sampling Using the sampling theorem to determine the minimum sampling rate for light �eld
rendering from a spectral analysis of light �eld signals. 17

Principal Component Analysis Statistical procedure to extract uncorrelated variables from a set of
observation. 12

Singular Value Decomposition Factorisation of an m × n Matrix M in UΣV∗ where U is a m ×m
unitary matrix, U is a m× n rectangular diagonal matrix and U is a n× n unitary matrix. 12

SVD Singular Value Decomposition 12

6



1 Introduction

1.1 BBC R&D

The British Broadcasting Corporation (BBC) is a public service broadcaster. Created in 1922, it is the
world's oldest broadcasting company. BBC broadcasts on television, radio and online. BBC R&D is the
research department of the BBC. It is located in the north lab in Salford and the south lab in London
where I worked.

I was in the team Immersive & Interactive Content which focuses on the development of next-generation
audio and video systems and ways in which these can o�er new interactive opportunities, including virtual
reality and augmented reality applications.

1.2 Objectives

The objective of this project is to set up a functional capture system consisting of multiple broadcast
cameras and depth sensors. Such a capture system will then be integrated into IP Studio, a framework
developed by BBC R&D for IP-based end-to-end broadcasting that allows them to produce content by
combining di�erent kind of media objects.

An example application would be the live capture of a game or quiz show in 3D. The show could then
be experienced in real-time in a virtual world in which the spectators would be present as avatars and
could, from their homes, using a computer, a tablet or a head mounted display, move freely around the
scene and actively participate in the programme. The gameshow host could even see the remote partici-
pant's avatars and interact with them, reacting to their movement and actions.

To create a �rst version of such a capture system, we used Microsoft's Kinect sensor because it is a
low-cost device combining a colour camera and a depth camera. Furthermore, Kinect is widely used by re-
searchers in computer science, electrical engineering and robotics to create new kinds of Human�computer
interactions [31], thus many previous works have been conducted on its use [13,14,25].

Once calibrated, a coloured point cloud can be computed from the Kinect data. Many works have
been done on generating meshes from 3D point cloud [8, 21, 23] but those operations are quite onerous
and require more precise depth information for a faithful rendition than the Kinect can provide. On the
other side, with image-based rendering techniques, a new point of view on a scene can be generated from
existing ones in quite simple ways.

The main idea behind this project is that knowing the depth information quite precisely, we should be
able to generate an accurate new point of view with very few existing point of view and without building
a mesh.

The project was divided into two main parts. First, the joint calibration of the system to get usable
data from the capture system and second, the exploration of rendering algorithms to render those data as
realistic as possible and to �nally create a real-time renderer.

In Section 2, the Kinect device and di�erent fundamental concepts relating to camera calibration and
image-based rendering will be presented. Section 3 describes the calibration approach taken in this work
and its practical implementation in detail. In Section 4, several techniques are discussed to render captured
data from new viewpoints. The focus here lies on the �delity of the rendering. Section 5, on the other
hand, introduces a simpler, yet real-time capable rendering approach that has been implemented in an
existing game engine.

The provisional planning can be found in Appendix A.

2 State of the art

Many publications exist in the �elds linked to my project. I could thus get technical information on both
Kinects and test several image-based rendering algorithms to apply to my setup.
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2.1 Microsoft's Kinect sensor

Kinect [17] is a 3D sensor by Microsoft for Xbox 360 and Xbox One video game consoles. It introduced
a new way of playing, using the body to interact with a game. Since its introduction in 2010, it has been
widely used in the world of computer vision for 3D scene reconstruction or object reconstruction. In 2013,
a second version has been introduced with improved features [18] and using another technology.

Basically, Kinect outputs an RGB image and depth information of the scene. The depth here corre-
sponds to the distance between a point of the scene and its orthogonal projection in the camera plane
(Figure 1).

Figure 1: Depth measured by Kinect. The (xc, yc, zc) axis build the camera coordinates system.

In many cases, Kinects data are used to produce meshes. Some approaches allow now to capture
real-time moving meshes from multiple RGBD cameras [8, 21].

Microsoft released a Software Development Kit [19] to use the Kinect on Windows which can be
integrated into the game engine Unity. Thus, the Kinect can be used to interact with a virtual environment.
In [7], The game engine is used more as a visualisation tool, similar to the goals of this thesis but with
the di�erence that the camera point of view remains the same so they can just look at a coloured mesh
deformed by a depth map.

2.1.1 Kinect for Xbox 360

Kinect for Xbox 360 (Kinect v1) was introduced in 2010. It is made of an RGB camera, an IR camera and
an IR projector. The projector projects an IR pattern in the scene and, knowing the projected pattern, a
disparity map can be computed from the distortion of the pattern seen by the IR camera. As explained
later on, the disparity corresponds to an �inverse depth�.

Capturing the Kinect output is achieved with libfreenect, an open source driver running on Linux
which is part of the OpenKinect project [1].

For this Kinect version with this driver the obtained output has the following characteristics:

RGB Format: .ppm
Size: 640x480
Frame rate: ' 30 Hz

Depth Format: .pgm
Size: 640x480
Frame rate: ' 30 Hz

The frame rate is the same for the depth and RGB cameras but the disparity image and the RGB
images are captured one after the other.

2.1.2 Kinect for Xbox One

For this second version (Kinect v2), the depth camera uses the time of �ight camera (ToF)technology,
which consists in measuring the time that it takes for an infrared ray to hit an object and go back to
the sensor. It has a better resolution and fewer shadows are projected so less information is lost. This
camera outputs directly the depth map of the scene, this one is captured, as well as the RGB image with
libfreekinect2-record, a fork of libfreenect2. Unlike Kinect v1, the depth image and the RGB image are
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captured quasi-simultaneously, i.e. the duration between both capture is very little compared to the frame
rate and both the depth and colour image get the same timestamp. The following output is obtained:

RGB Format: .png
Size: 512x424
Frame rate: ' 30 Hz

Depth Format: .png
Size: 512x424
Frame rate: ' 30 Hz

Libfreenect2 apply �xed calibration parameters such that the depth and RGB superimpose roughly.
So the RGB image output is cropped and sampled from the original image which has HD resolution .

Figure 2 shows the depth information returned by the two Kinect versions. We can see that the depth
map on Figure 2b shows more precise edges than Figure 2a and no shadows are projected with the depth
camera using ToF in Kinect v2. Kinect v1 can, however, see further than Kinect v2, even though the
documentation speci�es the same depth range (0,80m to 4,00m) for both versions.

(a) Disparity map output by Kinect v1 (b) Depth map output by Kinect v2

Figure 2: Depth information output by the two Kinect versions, black values correspond to no information.

2.2 Calibration

The camera calibration consists in estimating camera parameters so that a point in space can be reprojected
in the camera's image coordinates. With the publication of [30] which propose a �exible camera calibration
method, a camera can be calibrated with no special equipment, except a checkerboard that must be shown
to the camera from multiple orientations.

The calibration parameters are separated in the extrinsic parameters that give the position of the
camera in world coordinates and its intrinsic parameters, linked to the imaging properties of its lens and
sensor.

2.2.1 Colour camera

With the extrinsic camera parameters which are a rotation matrix Rc and a translation tc, a point can
be transformed from world coordinates xw to camera coordinates xc with Eqs.(1) [11].

xc = Rc
T (xw − tc) (1)

Then, the same intrinsic model used by Herrera [13] is used. The reprojection of a point from colour

camera coordinates xc = [xc, yc, zc]
T
to the colour image coordinates pc = [uc, vc]

T can be computed
using the following equation:

The point is �rst normalised xcn = [xn, yn]T = [xc/zc, yc/zc]
T
then the distortion is applied:

xcg =

[
2k3xnyn + k4(r2 + 2xn

2))
k3(r2 + 2yn

2) + 2k4xnyn

]
(2)
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xck = [xk, yk]T = (1 + k1r
2 + k2r

4 + k5r
6)xcn + xcg (3)

where r2 = xn
2 + yn

2 and kc = [k1, ..., k5] are distortion coe�cients.

Finally, the coordinates of the point in colour image space are given by:[
uc
vc

]
=

[
fcx 0
0 fcy

] [
xk
yk

]
+

[
u0c

v0c

]
(4)

where fc = [fcx fcy] are the colour camera focal lengths in terms of pixel dimensions in the x and y
directions respectively and pc = [u0c v0c] the camera principal point.

Thus, there are 6 intrinsic and 9 extrinsic parameters to estimate to describe a colour camera model:
Lc = {Rc, tc,kc, fc,pc}. Indeed, a rotation matrix can be represented by a 3-dimensional vector using
Rodrigues Formula [30], this vector is parallel to the rotation axis and its magnitude is equal to the
rotation angle.

2.2.2 Depth sensor

The transformation between world coordinates and depth image coordinates is similar to the one used for
the colour camera so we have the following parameters: {Rd, td, fd,p0d}. However, Herrera [13] de�nes
the distortion model as a backwards model (image to world) instead of a forward model (world to image)
de�ned in Eqs.(2) and (3). This makes the computation of the distortion easier since we will compute a
3D point xw from a depth camera pixel [ud vd]

T .

First, the pixel is transformed from image coordinates to get the distorted direction xdk = [xk, yk, 1] in
depth camera coordinates with equation (5).

xdg =

[
xg
yg

]
h =

[
fdx 0
0 fdy

]−1 [
ud − u0d

vd − v0d

]
(5)

Second, this point is undistorted by equation (6) to get the direction of the distorted point in depth
camera coordinates xdn = [xn, yn, 1]T .

xdg =

[
2k′3xkyk + k′4(r2 + 2xk

2))
k′3(r2 + 2yk

2) + 2k′4xkyk

]
(6)

xdn(1 + k′1r
2 + k′2r

4 + k′5r
6)xdk + xdg (7)

where r2 = xk
2 + yk

2 and kd = [k′1, ..., k
′
5] are distortion coe�cients.

From its direction in depth camera coordinates and its depth, a 3D point can be reconstructed.

For Kinect v1, Herrera [13] models the relation between the disparity dk and depth zd by the equation:

zd =
1

c1dk + c0
(8)

where c0 and c1 are two additional depth camera intrinsic parameters to be estimated.

Herrera also puts forward the following distortion model for the disparity:

dk = d+ Dδ(u, v) · exp(α0 − α1d) (9)

Where d is the distorted disparity returned by the Kinect and Dδ(u, v), α0 and α1 are parameters to
optimise.

Thus, we get the 3D point in depth camera coordinate xd = zd · [xdn, ydn, 1]T .

Finally, xd is transformed to world coordinates xw by Eqs. (10).

xw = Rdxd + td (10)

Thus, the parameters to estimate are the following: Ld = {Rd, td,kd, fd,pd, c0, c1, Dδ(u, v), α0, α1}.
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2.3 Pixel displacement

In [22], a method is presented to generate, from a texture and its depth map, a new texture seen from
another point of view. This aims to simulate the parallax e�ect without needing to model all the details
of a surface (for example a balcony on a facade).

To do so, the pixels are moved on the image as a function of the depth of the pixel on the depth map
and the new viewpoint. The further a point lies o� the plane de�ned by the input texture, the stronger
the parallax is, so the more the pixel will be moved to get the new image. The displacement also depends
on the calibration parameters of the cameras that captured the image and the virtual camera.

Basically, it is equivalent to compute, from a (u, v) position on the initial image, the point coordinates
in world and then project it in a virtual camera to get a new position (u′, v′) for the pixel.

To �ll the holes created by the pixel displacement, two 1-D interpolations are applied. For each pixel
moved, an interpolation is done between this one and the last one moved. To prevent occlusions, the pixels
must also be warped from the borders of the image toward the epipole corresponding to the new viewpoint.

This technique seems quite interesting for my setup but the limitation is that there is no simple way
to combine several warped points of view as shown in Figure 3

Camera 1 Camera 2

Virtual
Camera

Warping Warping

?

Image captured by
camera 1

Image captured by
camera 2

Image expected

Top view of the setup

Figure 3: Here we want to generate the virtual camera image from the view of camera 1 and 2. We
can wrap each image separately but then it is complicated to recombine them to keep only the valid
information brought by each image

2.4 Plenoptic sampling

In this section, I tried to apply the Plenoptic sampling theory to my setup. It is an image-based render-
ing technique consisting in analysing the spectrum of the scene's Light �eld to determine the minimum
sampling rate for its rendering, i.e. the number of cameras and the image resolution needed for a perfect
reconstruction from a new point if view. A Light �eld is a representation of a 3D scene as a �eld of light
rays described by a plenoptic function l. If the object is in free space, the Light �eld can be parametrised
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into a 4-D plenoptic function [10,15].

I will make the assumption that in our setup, the Kinects are placed along a circle of radius R looking
toward its centre as represented in Figure 4. I also suppose that the Kinects are one simple camera with
one colour value and depth value for each pixel. We aim to determine how many cameras we need in this
setup to be able to generate a new point of view. Using the depth information provided by the Kinect
should reduce the number of Kinect needed.

R

Figure 4: This is the studied setup. A point of the captured surface projects in several cameras in di�erent
pixels.

2.4.1 Cameras in a plane

The plenoptic function can be parametrised in several ways. One parametrisation can be done with two
planes: a camera plane indexed by (s,t) and a focal plane indexed by (u,v) (Figure 5). Each light ray
corresponds then to a value l(u, v, s, t) which is equivalent to the colour of the pixel (u,v) of a camera in
(s,t).

s u

t v

(u,v)

(s,t) Object

Camera plane Focal plane

Light ray

Figure 5: A light ray can be parametrised with four coordinates (u, v, s, t).

This plenoptic function can then be sampled, which is equivalent to having cameras placed at regular
positions in the (s,t) plane with discrete pixel coordinates (Figure 6).

The question now is, considering a �xed resolution for the images, how far apart the cameras can be
placed in order that no information is lost. In [6], a minimum sampling rate is proposed for Light �eld
rendering, using the depth of the scene.

Light �eld Sampling

Let ∆s and ∆t be the distance between the cameras along the s and t axis and ∆u ×∆v the size of
an image pixel, the sampled Light �eld is given by:

ls(u, v, s, t) = l(u, v, s, t)
∑

n1,n2,k1,k2∈Z

δ(u− n1∆u)δ(v − n2∆v)δ(s− k1∆s)δ(t− k2∆t) (11)

Hence its Fourier transform:

Ls(Ωu,Ωv,Ωs,Ωt) =
∑

m1,m2,l1,l2∈Z

L(Ωu −
2πm1

∆u
,Ωv −

2πm2

∆v
,Ωs −

2πl1
∆s

,Ωt −
2πl2
∆t

) (12)
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t

v

z

Figure 6: 2D illustration of a sampled Light �eld signal. The disparity d corresponds to the distance
v1 − v0, where v0 and v1 are respectively the projection pixel coordinates in the t0 and t1 camera local
coordinate system.

So by sampling, the spectrum of the plenoptic function is replicated in every 4D point ( 2πm1

∆u
, 2πm2

∆v
, 2πl1

∆s
, 2πl2

∆t
),

where m1,m2, l1, l2 ∈ Z.

Spectral support bounds

For a point with depth z(v, t) and a camera displacement ∆t = t, the disparity d between two image
coordinates (see Figure 6) is given by d = ft

z(v,t) .

d =
ft

z(v, t)
(13)

Therefore, the radiance received in (s, t) is

l(u, v, s, t) = l(u− fs

z(u, v, s, t)
, v − ft

z(u, v, s, t)
, 0, 0) (14)

Thus, any frame captured from a camera can be expressed as a function of the frame captured by the
reference camera (for example camera t0 in Figure 6).

As showed by [6], using this relation, the 4D Fourier transform of the Light �eld function l(u, v, s, t)
for a constant depth z0 gives:

L(Ωu,Ωv,Ωs,Ωt) = 4π2L′(Ωu,Ωv)δ(
f

z0
Ωu + Ωs)δ(

f

z0
Ωv + Ωt) (15)

Consequently, the spectral support of the Light �eld signal l(v, t) is de�ned by the line f
z0

Ωv + Ωt = 0.
Thus, the spectrum of the Light �eld signal for a scene with non-constant depth is bounded by two lines
f

zmin
Ωv + Ωt = 0 and f

zmax
Ωv + Ωt = 0 (Figure 7). Since the depth of the scene is limited by zmin ≥ f ,

the spectrum support is limited by the minimum slope Ωv

Ωt
= − f

zmin
≥ 1, so a reconstruction �lter can be

de�ned.

Signal reconstruction

The idea presented in [6] and illustrated in Figure 8 consists in decomposing the spectral support into
multiple layers and use a reconstruction �lter for each layer to allow a lower sampling rate than when
using only one �lter.
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Figure 7: Fourier transform L(Ωv,Ωt) of the 2D Light �eld signal l(v, t). Each depth in the scene gives a
line in the spectrum. The spectrum is bounded by the lines given by the minimum and maximum depths
zmin and zmax.

Sampled signal

3 depth intervals

One reconstruction lter 

for every depth interval

Reconstructed signal

Figure 8: Example of reconstruction of a 2D Light �eld function using 3 layers. The scene can be
decomposed in 3 scenes with 3 di�erent depth intervals d1 = [z2, zmax], d2 = [z1, z2] and d3 = [zmin, z1],
which give three Light �eld functions ls1, ls2 and ls3. By �ltering each of those signals and summing them,
the initial Light �eld functions l(v, t) can be reconstructed even though there were aliasing on the global
spectrum.
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2.4.2 Concentric mosaic

To apply similar results as in a planar setup to a circular setup, we need to �nd a parametrisation of a
light ray depending on the distance from the ray origin (point of the surface) to the cameras. In a circular
setup, we can consider the distance to the centre of the capture circle. In this case, the position of a
camera on the circle is de�ned by β while the pixels are indexed by α. For simpler notations, I will only
consider a 2D setup (corresponding to the top view), such that α has only one dimension. A light ray
emitted by a point of the surface can be represented by the coordinates (r, φ, θ) and a light ray captured
by the camera is de�ned by (α, β).

In [4,27], an outward looking concentric mosaic is considered (Figure 9). The conclusions are the same
than for the planar setup, i.e. we can determine the plenoptic function spectrum boundaries in function of
the scene depth, but the approach is di�erent. In the previous part, we associated the plenoptic function
l(v, t) to the function in another pixel v′ of the reference camera in t = 0‘ to get l(v, t) = l(v′, 0). Here, the
strategy is to associate the plenoptic function l(α, β) the surface plenoptic function ls(s, θ) where s(r, φ)
is the captured surface.

Captured 
surface

Figure 9: Outward looking concentric mosaic. The cameras are placed on a circle and capture the scene
outside the circle.

A surface at constant depth is de�ned by: {
r = r0

ϕ = s
r0

(16)

From Figure 9, we can establish the following relations:

r0 − R sin α
sin(α+β−φ) = 0 (17)

α+ β + φ = θ (18)

Provided that the �eld of view of a camera is limited, we can assume sin α ≈ α and since the scene
must be outside the circle, we have |α+ β − ϕ| < α⇒ sin(α+ β − ϕ) ≈ α+ β − ϕ.

We can deduce:

s = r0(α+ β) (19)

θ = α+ β + φ (20)
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This parametrisation enables then, with a substitution in the plenoptic function spectrum to �nd that
the slope of the spectrum is always less than 45◦ [27].

Captured 
surface

Figure 10: Inward-looking concentric mosaic. The cameras are placed on a circle and capture the scene
inside the circle.

In the case of an inward-looking concentric mosaic, the equations do not change much. From Figure
10 we have:

h = R sin α (21)

= r sin(α+ β − ϕ) (22)

Hence the equations:

r0 +
R sin α

sin(α+ β − φ)
= 0 (23)

θ = α+ β (24)

The issue when the scene is inside the circle is that |α+ β − ϕ| < α does not apply anymore. Indeed,
for many point positions we will have β − ϕ� α.

Thus, the simpli�cation sin(α+β−ϕ) ≈ α+β−ϕ is not possible or would restrict us to a very small
part of the circle. With this parametrisation, the plenoptic function spectrum can not be computed easily
anymore and we have no indication on the spectrum boundaries to estimate a limit sampling rate and
thus, the theoretic number of cameras needed for our setup.

In [28], Zhang con�rms that the mapping between l(α, β) and the surface plenoptic function ls(s, θ) has
rarely an explicit form. It is however possible, if we know the object shape, to perform stochastic sampling
on the light rays from surface Plenoptic sampling and record their corresponding (α, β) coordinates to
count the frequency of the light rays falling into each pixel α of a camera β and deduce how to place the
cameras.

In conclusion, we could not �nd a way to compute how many cameras should be used for a capture
with our setup using the Plenoptic sampling theory.
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3 Kinect calibration

3.1 Using several Kinects at the same time

The calibration technique described in Section 2.2 assumed a single depth sensor and multiple colour
cameras. In this work, several depth and colour cameras are used simultaneously which introduces several
issues.

3.1.1 Interference

The main issue is that the Kinects v1 interfere with each other. One Kinect sees indeed the points of the
other Kinect's projected pattern which creates di�erent sorts of e�ects, like �holes� in the disparity map
(Figure 11).

(a) Disparity map for one Kinect v1. (b) IR projected pattern for one Kinect v1.

(c) Disparity map for two Kinects v1. (d) IR projected pattern for two Kinects v1.

Figure 11: Figures 11a and 11b show the depth map output by a Kinect v1 when looking at a wall and
the infrared points pattern it sees. Figure 11c shows that when a second Kinect points to the wall, it
creates holes in the disparity map output by the �rst Kinect. On Figure 11d, we can see that the infrared
patterns of both Kinect superimpose.

In [14], two methods are presented to eliminate interference between two Kinects. The �rst one is to
turn o� the illuminator via electronics, which is not safe since it requires interfacing with a laser diode.
The second method is to build a set of mechanical shutters that hides the IR projectors with a distinct
phase which would require the appropriate equipment.

For the calibration, those interference holes do not really matter as long as there are enough valid
depth values to calibrate the depth camera properly. But to reconstruct a scene, we do not want holes in
our generated image. The good point is that using several Kinects makes it unlikely that both generated
point cloud have missing values at the same place. Moreover, placing the Kinects far from each other
reduces this e�ect.

To remove the holes, a morphological operator can also be used since the holes are quite little and
sparse. This works �ne with an opening with a circular structuring element of an adapted size.

With two Kinects v2, however, we could not create interference even by placing them on top of each
other or looking straight at each other. This can be explained by comparing the frame rate to the
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observation duration. Kinect v2 captures a frame every 33 ms. To know how far a point is with the
Time of Flight technology, an infrared signal is sent and comes back to the camera. the observation
duration must then be at least as long as the light return trip from camera to furthest point in the
scene. Since the maximum distance is limited to 4 metres, the camera should observe the scene for
2 · 4 m · 3 · 10−8m/s = 0.24 µs� 33 ms. So the probability that both non-synchronised Kinects observe
the scene at the same time is very low.

3.1.2 Synchronisation

For the system calibration, the synchronisation is not an issue since the scenes we capture are still. But
ideally, the calibration should be done by capturing a sequence and using the images of the sequence. And
the synchronisation is essential to reconstruct a sequence. Eventually, the Kinects will be integrated into
IP Studio, to synchronise them and handle their output easily.

3.1.3 Bandwidth

The last limitation is that the USB hubs are limited in bandwidth. I could make a Kinect v1 work on
each of my four USB hub. However, on an external USB hub plugged into the computer I could only
get one Kinect working properly. Sometimes two Kinects v1 worked but then, not all the channels were
transmitted to the computer, for example only the sound and not the image.

However, several Kinect v2 can not be used on one computer because the bandwidth needed is much
higher. This makes the use of a tool like IP studio essential to get and synchronise the data.

3.2 Calibration steps

The calibration is done with a sequence of images of a checkerboard (with known size) seen from di�erent
distances and with di�erent orientations (Figure 12). From those images, initial values can be computed
for the calibration parameters described in part 2.2. Those parameters are then re�ned using a non-linear
minimisation algorithm.

Kinect cameras Calibration checkerboard

Figure 12: Calibration setup for one Kinect. There are three coordinate systems, {W} linked to the
checkerboard and {C} and {D} are respectively the Kinect colour camera and depth camera coordinate
system. The calibration gives us Rc, tc, Rd and td to go from a coordinate system to another.

3.2.1 Initialization

To get an initial calibration of the colour cameras, Zhang's method [29] is used. First, the corners of the
checkerboard are extracted from the image. Knowing the position of the corners in world coordinates, a
homography is computed between world coordinates and colour camera image coordinates. Each homog-
raphy imposes constraints on the camera parameters, so those parameters can be computed by solving a
linear system of equations. The initial distortion coe�cients are set to zero.
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Knowing the position of the Kinect colour camera, the depth camera parameters are then initialised
with standard values. The depth camera is translated along the x-axis in the colour camera coordinates
system, both depth and colour camera of a Kinect should look in the same direction and distortion coef-
�cients are set to zero.

In this section and further, the world coordinate system will be de�ned as the camera coordinate
system of the �rst colour camera.

K =

fcx 0 u0c

0 fcy v0c

0 0 1

 =

590 0 320
0 590 230
0 0 1


Rd = Rc

td = tc + Rc[−0.025 0 0]
T

[c0 c1] = [3.1121− 0.0028525]

kd = [0 0 0 0 0]

where Rc and tc are the rotation and the translation matrix of the Kinect colour camera.

3.2.2 Global re�nement

The global re�nement step consists in minimising the weighted sum of squares of the measurement repro-
jection errors over all the parameters.

For colour cameras, the reprojection error is the Euclidean distance in pixel between the position of
the checkerboard corners in the colour camera image p̂ and the projection of the checkerboard corners
from world coordinate system to colour camera image coordinate system p.

For depth cameras, the reprojection error is the di�erence between the measured disparity d̂ and the
predicted disparity d computed from the distance of the checkerboard along the optical axis of the depth
camera using Eqs. (8).

Those reprojection errors have di�erent units so they are weighted by the inverse of the corresponding
measurement variance (σc, σd).

Thus, we got the following cost function:

c(Lc,Ld) =
∑
i

eci (25)

Where i indexes an image, i.e. a checkerboard position and ec =

∑
k

‖p̂k−pk‖2

σc
2 with k indexing the

corners of the checkerboard.

Finally, we non-linearly minimise this cost function along all parameters with the Levenberg-Marquardt
algorithm [16].

3.2.3 Joint calibration

The joint calibration of the Kinects is done in two steps.

In the initialisation step, each Kinect colour camera is calibrated individually using Zhang's method
[29]. Then the colour camera parameters are re�ned using all Kinect colour cameras n by minimising
the cost function (26). The depth camera parameters are then initialised using the position of the colour
cameras and the parameters are re�ned for each Kinect n, using its colour camera and depth camera by
minimising the cost function (27).

c(Lc1,Lc2, ...,Lcn, ...) =
∑
i

eci (26)

ci(Lcn,Ldn) =
∑
i

eci +
∑
i

edi (27)
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Where ed =

∑
l

‖d̂l−dl‖
2

σd
2 with l indexing the pixels belonging to the checkerboard in the depth image.

In the minimisation step, a non-linear minimisation is applied on the cost function (28) along all the
parameters.

c(Lc1,Lc2, ...,Ld1,Ld2, ...) =
∑
i

∑
‖p̂i − pi‖2

σc2
+

∑
‖d̂i − di‖

2

σd2
(28)

3.3 Implementation

To implement the Kinect joint calibration, I used the Matlab toolbox provided by [12] as a basis. Originally
this toolbox can be used to calibrate a Kinect jointly with several external RGB camera. I aimed to adapt
it for the joint calibration of several Kinects with external cameras and make it work with the standard
version of Matlab without additional toolboxes.

3.3.1 The program

Before explaining the modi�cations made to the calibration toolbox, this section describes how it works
and the step that must be followed by the user.

First, the RGB images and disparity map path must be given, as well as the �les name format.

Second, the corners of the checkerboard must be selected on every RGB image and the size and number
of squares speci�ed. This data will then be used to calibrate the RGB camera as shown in Figure 13.

Square size

Number of squares

along x and y

Corners coordinate 

in World space

Corners selection

in RGB image

Corners coordinate 

in image camera space

User input

x

y

Homography

computed

Camera parameters

Figure 13: This is an illustration of Zhang's calibration method [29]. If the position of the checkerboard is
known in world space, then the parameters of the camera can be computed from the homography between
the checkerboard in world space and its camera image.

After the RGB camera calibration, a new world space can be de�ned as the reference camera space
(coordinate space of the �rst colour camera). And we get the position Rext(i), text(i) of the checkerboard
in each frame i.

Then the user has to select the plane to which the checkerboard belongs to on the depth images. The
region selected will be used as a mask to know which point of the disparity map can be used to compute
the disparity error as shown in Figure 14.

From that point, the rest of the calibration can be done.

3.3.2 Modi�cations

Supporting several kinects
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Plane mask

selected on 

disparity map
Measured disparity

Plane depth expected 

from

User input

Residual error

 to minimise

Computed from  

the depth camera

parameters

Expected disparity 

Figure 14: The plane selection indicates the points that can be used to compute the disparity error and
then re�ne the depth calibration.

The �rst change to make was to modify the data structures to be able to read, store and process the
data of several Kinects.

Then I had to adapt the initialisation of each depth camera position, with regard to the colour camera
of the same Kinect as explained in Section 3.2.1. To re�ne this initial calibration, I ran the existing
re�nement on each depth camera, one after the other, using its corresponding RGB camera images.

Computation of the expected disparity

With several Kinects, the initial computation of the disparity error is no longer adapted. To compute
this error, we need to estimate the disparity on the checkerboard to compare it to the disparity measured
on the disparity image as shown in Figure 14. To compute this expected disparity, we have (Rext, text)
which give the position of the checkerboard in world. From those, the normal to the plane Nw and the
distance from the plane to the world origin dw can be computed. The distance from the plane to the
depth camera is then deduced by �nding the normal Nd and the position dd to the plane in the depth
camera coordinate system. Those are computed with equation (29).

Nd = Rd
T .Nw

dd = −td ·Nw + dw
(29)

Finally, from Nd and dd, we can get the depth for each point of the plane and compute a disparity
value with the calibration parameters.

Fitting a plane to a point cloud

The calibration toolbox used was coded with the image processing and the optimisation Matlab tool-
boxes. Without them, some functions had to be reimplemented to perform the optimisation.

To correct the depth distortion, the calibration toolbox uses depth images of the plane without a
corresponding RGB image. For those frames, the position of the plane can not be deduced from the
checkerboard corners so it must be computed from the 3D points reconstructed thanks to the depth cam-
era calibration parameters and the depth map.

21



The original function used a Principal Component Analysis (PCA) to determine the normal to the
board's plane. Indeed, the variance of the points along this axis is minimal, so the normal is given by the
third eigenvector of the point cloud's covariance matrix.

Without the optimisation Toolbox, a PCA can not be applied anymore, so the Singular Value De-
composition (SVD) is used instead. The point cloud X is in the world coordinate and the centre of
the point cloud c can be computed by calculating the mean point. Let pi be the points of the point
cloud and N the number of points. The centre of the point cloud is c = 1

N

∑N
i=1 pi and the matrix

A = 1
N [p1 − c,p2 − c, . . . ,pN − c] can be de�ned.

The SVD A = UΣTT gives us the desired information. Indeed, the columns of U give, in decreasing
order, the direction of maximum variation of the data [20]. The normal n to the plane corresponds then
to the direction of least variation, given by the last column of U and the distance d from the plane to the
origin can then be computed by d = n · c.

Levenberg Marquardt Algorithm

The second function which had to be re-implemented is the Levenberg�Marquardt Algorithm (LMA)
which is used to re�ne the cameras calibration parameters. To do so, a Matlab implementation of the
Levenberg-Marquardt-Fletcher algorithm [2, 3] was used as a basis. Since this algorithm is more com-
plex and did not give improved results on the calibration, I simpli�ed it to perform the basic Leven-
berg�Marquardt Algorithm.

LMA is an iterative method similar to the Newton iteration method. We have the hypothesised relation
X = f(P), where X is a measurement vector and P a parameter vector. X is an approximation of the
true value X̂ and we seek the vector P̂ that satis�es X = f(P̂) + ε such that ‖ε‖ is minimised [11].

In the present case, P is the vector of the camera parameters. Those parameters have di�erent di-
mensions, they can be �oats, vectors or matrix, so the Matlab calibration toolbox includes functions to
store those parameters from a calibration structure type to a vector and then write the optimised values
in the structure again. This includes a �ags system to specify which parameters must be written and then
read from the vector since we do not want to optimise all the parameters at each stage of the calibration.
So �rst, those functions have to be modi�ed to enable them to write and read the parameters of several
depth cameras in and from a vector, making sure that in any case, a value is written and read at the same
index of the vector.

In the present case, X is the vector of the weighted residual error for each disparity and colour images
and we want to �nd P̂ such that X is as close as possible to X̂ = 0.

Supposing that f is locally linear, we have f(P1) = f(P0) + J∆, where J is the Jacobian matrix
∂X
∂P . At each iteration, we seek the parameter vector Pi+1 = Pi + ∆i+1 such that Xi − f(Pi+1) =
Xi − f(Pi)− Ji∆i+1 = εi − Ji∆i+1 is minimised.

In the Newton method, ∆i+1 is obtained by minimising ‖εi − Ji∆i+1‖ which is a linear minimisation
problem. Thus ∆i+1 can be obtained by solving the equation J

T
i Ji∆i+1 = JTi εi. In LMA, this equation is

modi�ed to get around a badly conditioned JTJ matrix. In the original calibration toolbox, the equation
used by the Levenberg-Marquardt function from Matlab is Eqs. (30) [16], so I implemented this version
of LMA. However many variations exist [9].

(JTi Ji + λI)∆i+1 = JTi εi (30)

The value λ is initialised to some value (Matlab defaults value λ = 0.01 is used) and then for each
iteration, if ∆ leads to an increased error, λ is multiplied by 10 or if the error decreases, it is divided
by ten. The algorithm is stopped when Pi converges (i.e. ‖∆i‖ is close enough to zero), ‖Xi‖2 is close
enough to zero or when the maximum number of iteration has been reached. The code of the function
can be found in Appendix C.

As shown in Section 3.4.3, this implementation of the algorithm is slower than the one from the Matlab
optimisation toolbox but the residual errors are similar.
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Interference

On the �rst calibration done with several Kinect, when there were too many holes in the depth map,
the calibration did not converge. So the code was modi�ed to systematically reject the points with invalid
disparity values. The consequence is that there are fewer points used to calibrate the depth camera in
this situation so the reconstructed point cloud is noisier.

Reprojection

Finally, a function was written to reproject a 3D point on any colour camera. Thus, the external RGB
cameras can be used to colour the point cloud and di�erent combination can be tested (see Section 4.4).

3.4 Application

I had at my disposition four Kinect v1 and one Kinect v2. In a �rst phase, captures were done with several
Kinects v1 while the Kinect v2 was used as external RGB camera.

3.4.1 Checkerboard

To capture the data sets, scripts calling libfreenect and libfreekinect-record were written, associating the
corresponding frames between the cameras and renaming the �les accordingly.

Several data sets could actually not be calibrated for di�erent reasons. Indeed, as told before, two
Kinects have to be far apart enough to prevent interference between the projected pattern which leads to
holes in the disparity map. But the cameras have to be close enough, such that both can see properly
the checkerboard (Figure 15). If the Board is too tilted or not enough, then we do not get enough usable
images where several cameras can see the plane to calibrate the system properly.

(a) RGB image (b) Disparity map

Figure 15: This Figure shows what happens when the checkerboard is too tilted with respect to the
Kinect. On the RGB image, the inner corners of the checkerboard can not be detected properly, while on
the disparity map, it is not even visible, probably because the angle of view makes its surface perfectly
re�ective to the IR rays.

We had a similar issue with the �rst calibration sets we captured. When the checkerboard is tilted,
there are holes in the disparity map at the position of the black squares (Figure 16). This is probably
because those squares are too re�ective for the IR light. Consequently, the light from the IR projector
is not di�used toward the IR camera, so the point pattern is not visible in those places. The same
phenomenon is also observed with the Kinect v2.

In conclusion, the checkerboard must be chosen carefully to enable a capture from a wide angle of view
by both the RGB and the IR camera.

3.4.2 Lighting

The lighting caused trouble as well since the Kinect camera gave images with very di�erent luminosity
and white balance according to their position in the scene (Figure 17). Here, using external RGB cameras

23



(a) RGB image (b) Disparity map

Figure 16: There is no depth information on the black squares when the checkerboard is tilted.

is particularly interesting because their sensitivity can be �xed to prevent these e�ect and their output
can be used to colour the points instead of using the Kinect RGB images.

(a) Kinect 0 (v1) (b) Kinect 1 (v1) (c) Kinect 2 (v2)

Figure 17: When several Kinects are looking at the same scene, they all give RGB images with di�erent
white balance and luminosity.

Another issue caused by the light is that when the checkerboard is far from the camera and strongly
illuminated, a part of the checkerboard is overexposed and the inner corners of the corner can not be
located precisely (Figure 18), which deteriorates the calibration accuracy. This shows the importance of
the lighting for the calibration.

(a) Kinect v1 (b) RGB camera

Figure 18: Same scene captured by a Kinect RGB camera (18a) and by a standard RGB camera (18b).
On 18a, it looks like the black squares do not touch each other.

3.4.3 Results

As a conclusion, some criteria for a good calibration can be established from those captures. 15 plane
pose with di�erent inclinations seems to be su�cient for a good calibration but the checkerboard must be
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seen properly and entirely by the colour camera and there must not be too many holes in the depth map
of the plane.

Calibration performances

I tested the calibration on di�erent data sets. The �rst one �Herrera� is the set of image provided with
the Matlab calibration toolbox. Data set A is a data set captured with two Kinects v1 and one Kinect v2
positioned as shown in Figure 19. The Kinect v2 is placed on one Kinect v1 since it is used as external
RGB camera at �rst.

In order to see the in�uence of the interference between Kinects on the data set A, I captured 2
depth image per Kinect for each plane position: one with the IR projector of the other Kinect occluded
(no interference) and one image with interference. From now on, I will mainly use the images without
interference, excepted when I precise the opposite.

Figure 19: Data set A was captured by two Kinects v1 and one v2 and the Kinects are indexed from 0
to 2 (between brackets).

Table 1 compares the residuals errors between the original calibration toolbox and the modi�ed ver-
sion with the optimisation function re-implemented. As expected, the results are similar. However, the
reimplementation of the optimisation is slower than the original Matlab implementation (about twice the
time on Herrera's data set).

Calibration toolbox Colour Depth
Herrera's toolbox 0.28 ±0.02 px 0.77 ±0.002 kdu
Modi�ed toolbox 0.32 ±0.02 px 0.784 ± 0.004 kdu

Table 1: Comparison of the residuals errors between the original calibration toolbox and the modi�ed
version for one Kinect on Herrera's data set.

Table 2 shows the results on one data set with di�erent number of Kinects. We can observe that the
duration of the calibration increases very quickly with the number of Kinects and is much higher for the
Kinect v2.

Data Nb Duration Colour 1 Depth 1 Colour 2 Depth 2 Colour 3 Depth 3
set Kinects ±0.04 px ±0.002 kdu ±0.04 px ±0.003 kdu ±0.03 px ±0.004 kdu
H 1 2mn 17 0.32 0.784
A 1 4mn 52 0.26 0.852
A 1 4mn 15 0.29 1.136
A 1 10mn 27 0.30 0.996
A 2 11mn 43 0.57 1.044 0.50 0.83
A 3 33mn 42 0.57 0.998 0.58 0.869 0.44 1.076

Table 2: Residuals errors of the cameras after calibration on Herrera's dataset (H) and on my data set A
with di�erent number of Kinects.
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Table 3 shows the residual errors on one data set with and without interference. The results are not
so good with the interference and worse for the depth camera 1 than for the second one. This can be
caused by the holes created by the interference, which are more present in the depth image of the Kinect
0 (Figure 20).

Data set Colour 1 Depth 1 Colour 2 Depth 2
±0.02 px ±0.006 kdu ±0.02 px ±0.004 kdu

A 0.57 1.044 0.50 0.83
A (interference) 0.69 2.090 0.57 1.132

Table 3

(a) Depth map seen by the Kinect 0 (b) Depth map seen by the Kinect 1

Figure 20: Same scene seen by two interfering Kinect v1.

3D reconstruction

In order to visualise the results, the reconstructed 3D points were �rst plotted in Matlab. Indeed, from
a depth image and the calibration of the depth camera, a 3D point xw = [xw, yw, zw]

T
can be computed

for each pixel [ud, vd]
T
of the depth image as shown in Section 2.2.2.

To get the colour of a 3D point, it can be projected in a colour camera image coordinate system using
equations (1) to (4). The point's colour is then the colour of the pixel obtained.

The colour can also be bilinearly interpolated between the neighbouring pixels of the projection point
but this takes more time and no di�erence was visible in the rendering.

Figure 21 shows the point clouds obtained from the data set A with and without interference. We can
see the di�erence of white balance between the two colour cameras and we can see on the checkerboard
that the calibration without interference is more precise. In Figure 21c, the same calibration is used as in
Figure 21b but the depth map used for the reconstruction has holes too because of interference. We can
see the location of the holes through the colour contribution of each Kinect but there are no actual holes
in the reconstructed checkerboard since the holes are at di�erent locations in the depth map of each Kinect.

Now that we have a working calibration and can build a point cloud from the Kinects, several methods
will be tested to achieve a rendering of those data as realistic as possible.

4 O�-line rendering

In a �rst phase, I studied several rendering techniques without considering the time constraint.

Since the colour of the points captured by the cameras on the opposite side of the circle do not give any
relevant information, I will only use the cameras on the same semicircle as the virtual camera to generate
the new point of view. To generate an image from a new point of view, a straightforward approach consists
in projecting the coloured 3D point cloud in a virtual camera. This projection implies the two following
issues: several points can project on the same pixel while on some pixels, no 3D point projects, leading
to holes in the resulting image (Figure 22).

I did most of the tests on Matlab and created some virtual scene in Blender to test the implemented
methods and see their limits. I captured the scenes from 360 di�erent angles with a camera rotating
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(a) Point cloud obtained with data set A using Kinect 0 and 1 without interference.

(b) Point cloud obtained with data set A using Kinect
0 and 1 calibrated with interference and images without
interference.

(c) Point cloud obtained with data set A using Kinect
0 and 1 calibrated with interference and images with
interference.

Figure 21
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(a) Virtual camera at 0◦ (b) Virtual camera at 22.5◦

(c) Virtual camera at 45◦ (d) Virtual camera at 67.5◦ (e) Virtual camera at 90◦

Figure 22: Images obtained by projecting the point cloud in the virtual camera at di�erent positions. The
two real cameras used to build the point cloud are at 0◦ and 90◦.

around the scene and for each capture, an RGB image is stored and the depth image where the depth is
the z coordinate in virtual camera coordinate system. The scene is included in the world space x=[-1,1]m,
y=[-1,1]m and the camera is rotating on a circle of radius 2m so the recorded depth values are between 1
and 3. Those depth values are then mapped between 0 and 1 such that they can be stored in an 8 bits
grayscale image, which gives a depth resolution of 2m/255 = 7, 8mm.

Working with synthetic data has several advantages. First, I can use any point of view for my recon-
struction, as many cameras as I want and I have a ground truth image for each angle of view to compare
the generated image with. Second, those sets are simpler since the depth resolution is known and constant
and the depths are captured from the same point of view than the colour which would be equivalent to
having the colour and depth cameras of one Kinect at the same position. Moreover, I can deduce the
camera parameters from the camera parameters in Blender.

Most of the tests have been made with 4 cameras at the positions [0◦,90◦,180◦,270◦] or 20 cameras
(every 18◦ from 0◦ to 359◦), and the virtual camera is placed at 45◦. The capture cameras are always
equidistant on the circle.

4.1 Implementation in Matlab

Since each of the methods presented needs other data, we had to think about the way to store the
information. We used lookup tables to get quickly the data in the loop writing the �nal images and to use
operations on tables for more e�ciency. The Kinects were indexed by k and most of the data were stored
in cell arrays. Then, for each Kinect k, the 3D points were indexed by idx. For example, for an image of
size 1024x1024, idx ∈ [1, 10242]. Thus, I have:

• The image colour corresponding to the point indexed by idx on the Kinect k: imc{k}(idx)

• Its depth value recorded by the Kinect k: imd{k}(idx)

• The table of the valid points indices (valid depth, alpha channel of the colour to 1): valid{k}. To
iterate over the points of a Kinect point cloud, we take then idx in valid{k}.
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• The 3D point reconstructed from imd{k}(idx): X{k}(idx) = [xkid, y
k
id, z

k
id]

• The colour of this point by projecting it in the camera cam: col{k}{cam}(idx) = [r, g, b]. Note that
col{k}{k}(idx) = imc{k}(idx) .

• Its 2D coordinates in the virtual camera image: Xi{k}(idx) = [ukid, v
k
id]

Beside this I also store information on the camera setup:

• Real cameras k parameters in a structure: calib{k}.R, calib{k}.t, calib{k}.K

• Virtual camera parameters: vcalib{1}.R, vcalib{1}.t, vcalib{1}.K

• Angular position of the camera k compared to the virtual camera: anglevc[k]

On synthetic data as well as on real data, I will usually use a copy of the �st camera as the virtual
camera so vcalib{1}.K = calib{1}.K.

4.2 Handling occlusions

When projecting the point cloud in the virtual camera, several points can project on the same pixel, but
we only want to see the colour of the closest point to the virtual camera. Figure 23a shows what we can
get when using no depth comparison. The red box is seen in front of the blue sphere and occludes a part
of the green cone. This happens because the points are projected one after the other and the points of a
cloud are projected in the same order than they are read on the depth image.

To handle this, I create a depth map by storing for each pixel the radial distance of the point projected
in this pixel to the virtual camera. Then I only overwrite the pixel with the projection of a new point
if this new point is closer to the virtual camera than the previous one. With this method, Figure 23b is
obtained.

(a) No depth comparison (b) Depth comparison. (c) Ground truth.

Figure 23: Image reconstructed by reprojection with a setup of 6 cameras.

In pseudo code, the base of the rendering algorithm is then:

for all cameras k in the semicircle of the virtual_camera

for id in valid{k}

get image projection coordinates (i,j) from Xi{id}

if dist(X(id), virtual_camera) < depthmap(i,j)

image(i,j)=col{k}{k}(id)

depthmap(i,j)=dist(X(id),virtual_camera)

end

end

end
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4.3 Filling holes

The second issue to solve is holes in the resulting image. Indeed, there are some pixels of the virtual
camera on which no 3D point projects. We could trace a ray from those pixels and �nd the nearest point
in 3D but this would be expensive and we aim to get an image without working in the 3D space. So I
implemented two methods to �ll holes in the �nal image. The �rst one uses interpolation and the second
uses a quad cloud instead of a point cloud and is described in Section 5.

4.3.1 Holes size

Horizontal parallax

Before trying to �ll those holes, it is interesting to estimate their size. Since the holes are mainly
created by the horizontal parallax, I will do the computations in 2D and the representations in top view.
Thanks to Figure 24, the relations (32) and (32) can be established between the width of a square facing
a camera and the size of its projection on the camera image in pixels.

Figure 24: Equation (32) establishes the relation between the width l of a quad facing a camera of focal
length f at distance d and the size of its reprojection in pixels spixel.

s = f
d · l2 −

f
d · l1 = f

d · l (31)

spixel = s
‖~a‖ = f ·l

d·‖~a‖ (32)

With this relation, we can get an idea of the density of our spatial sampling.

For the synthetic data, ‖~a‖ = 3.1250e−5m and f = 0.032m. Let d be the depth of the point for the
camera that captures it. We will consider the limit cases d = 1m and d = 3m.

• For d = 1m : spixel = 1pix⇔ l(1) = 0.98mm

• For d = 3m : spixel = 1pix⇔ l(3) = 2.94mm

• The depth resolution does not depend on d and is ∆d = 2m
255 = 7.8mm (this only applies to the

synthetic dataset)

Figure 25 is a scaled representation of the spatial sampling of the synthetic data.

In an ideal case (a valid depth value for each pixel of the depth map), for each ray through a pixel
there is a unique depth value. Here this applies, so the maximum distance between two points along the
x-axis ∆xmax depends on three parameters:

• The distance df from which the furthest of the two points was captured

• How many depth steps n there are between both points

• From which pixel comes the nearest and the furthest point. Where a pixel is indexed by its angle α
compared to the camera optic axis in the horizontal plane.
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capturing camera
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virtual 
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Figure 25: Representation of the spatial sampling of the synthetic data. The red and blue lines represent
two surfaces and the discs mark the positions where the surface is sampled.

The distance between two points along the y-axis is then n ·∆d and is independent of d so we get Equation
(33) and (34). The di�erent parameters and those distances are represented in Figure 25.

∆x(d, n) = l(df ) + sign(|αf | − |αn|) · n · tan(αn)∆d (33)

∆y(d, n) = −sign(αf − αn) · n ·∆d (34)

The considered cameras have a �eld of view of 26.6◦. So for d = 3m, n = 1 and α = 13.3◦, Equations
(33) and (34) give ∆xmax = 4.8 mm and ymax = 7.8 mm. Then the distance e�ectively seen between
two points depends on the orientation of the camera. In the worst case, the perceived distance will be
lvmax =

√
x2
max + y2

max = 9.15mm. This width lvmax will then project on sv,1 = 9.4 pixels if the points
are at dv = 1m from the virtual camera, or sv,1 = 3.12 pixels if the points are at dv = 3m.

The conclusion is that if two neighbouring points have a depth di�erence lower or equal to ∆d (this
is equivalent to the condition n ≤= 1), then the projection of the point cloud on a virtual camera at one
metre or more will create an image with holes no wider than 10 pixels.

Holes in a pixel column

Until then, I only considered the distance between the points in the horizontal plane, but when the
virtual camera looks at a couple of points closer than the virtual camera, two points that gave neighbour-
ing pixels on a column of the capturing camera can give two non-neighbouring pixels on a column of the
virtual camera. This can be quanti�ed quite easily for two points at the same depth. In the synthetic data
set, in the worst can, the virtual camera sees at 1 metres two points that were captured at 3 metres of the
capture camera. If the points are seen on two neighbouring pixels by the capture camera, the distance
between them in the real world is lhv(3) = 2.9 mm, which projected on the virtual camera gives 3.0 pixels.

For each couple of point we could compute on how many pixel they project in the virtual camera
image, but it would be a lot of computation. Just associating a distance between points in function of the
depth where the point was captured will give us satisfying results.

Kinect v1

For Kinect v1, [25] gives the quantization function Eqs. (35).
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∆d(dc) = 2.73 dc
2 + 0.74 dc − 0.58 [mm] (35)

Where ∆d is the depth quantization step in mm for a point captured at depth dc.

And from Eqs. (32), we get the equation (36).

l(dc) =
dc · ‖~a‖
f

(36)

Where f is the focal length of the capture camera and ‖~a‖ the size of a pixel.

From this we can determine an average spacing sw between points that are captured at a depth dc:

sw(dc) =

√
∆d(dc)

2
+ l(dc)2.

This distance can then be projected on the virtual camera to get the points spacing on the camera

image svc(dv) = sw(dv)·f
dv·‖~a‖ .

So this spacing depends on the distance of the points to the capture camera and the virtual camera.
Table 4 shows the spacing between points for di�erent distances. If we assume that dv = dc ± 1 m, only
the values in the blue cells can be considered.

dc ∆d(dc) l(dc) Spacing in Spacing on virtual camera svc(dv)
(mm) (mm) world sw(dc)(mm) dv = 1m dv = 2m dv = 3m dv = 4m

1 m 2.9 1.7 3.4 2.0 px 1.0 px 0.7 px 0.5 px
2 m 12 3.4 13 7.3 px 3.7 px 2.4 px 1.8 px
3 m 26 5.1 27 16 px 7.8 px 5.2 px 3.9 px
4 m 46 6.8 46 27 px 14 px 9.1 px 6.8 px

Table 4: Spacing between points for di�erent distances from point to the capture camera dc (Kinect v1)
and virtual camera dv.

4.3.2 Interpolation

A common method to �ll holes is interpolation. However, here a simple interpolation is not a good strategy
(Figure 26a). The interpolation links separated objects and the background can be seen through some
objects like the cone.

To improve the result, a constraint can by applied: the image should be interpolated only between
points that belong to the same surface. This way, only holes due to the parallax will be �lled and not the
holes corresponding to a lack of information caused by occlusion.

We can say that two points belong to the same surface if there are less than nbpix pixels between both
points reprojection, and they have about the same distance to the camera. To interpolate those pixels,
we use the depth map recorded for the virtual camera and consider a number of depth intervals between
the minimal depth and the maximum depth. For each depth interval, the pixels belonging to this depth
intervals are interpolated and the resulting pixels are written on the previous layers.

The parameters have to be chosen carefully. For the synthetic data set, we used nbpix = 10 since as
shown before, it is the size of the biggest holes in the image and for the depth steps, we consider a depth
intervals of size lv,max = 10mm as computed before, which gives quite good results as shown in Figure
26c.

The following pseudo code describes the horizontal interpolation and Figure 27 shows the image com-
puted for each depth interval.

img_int = interpolate_horizontal(img, dmap)

img_int=img

for each depth interval d

for each line l

for each column c

if depthmap(l,c) is in d and img(l,c) has no colour data
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(a) Regular horizontal interpola-
tion.

(b) Only pixels close enough (10
pixels) are interpolated.

(c) Only pixels close enough (10
pixels) and belonging to an inter-
val of 10mm are interpolated

Figure 26: Comparison between di�erent interpolation methods.

cnext=c

interpolate img between (l,cprev) and (l,cnext) and write result in img_int

end if

cprev=cnext

end

end

end

(a) Initial image (b) Depth 6 (c) Depth 5

(d) Depth 4 (e) Depth 3 (f) Depth 2 (g) Depth 1

Figure 27: Here a horizontal interpolation is made on 6 depth intervals. For each depth interval, the image
computed before is overwritten with the new interpolated values.

Figure 26c still shows holes because some points are seen closer than the depth at which they were
captured. This can be solved by applying a vertical interpolation on the image obtained after the horizontal
interpolation. To do so, we use the interpolated depth map, computed at the same time as the colour
image horizontal interpolation. With nbpix = 4pixels, I get �gure 29a with no holes.

Figure 28 shows the results on real data from two Kinects v1. The virtual camera is placed between
both capture camera. I used the maximum values of Table 4 to set the maximum pixel distance and depth
di�erence to interpolate between two pixels: 10 pixels and 50mm, and we get an image with no holes.
This image was interpolated in about 4mn30.

Even though this method gives good results, we can not use it to make a real-time rendering . That's
why in Section 5 we will use quads of varying size to �ll the holes.
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(a) Image obtained by simple reprojection (b) Image interpolated with the parameters 10 pixels,
50mm

Figure 28: Application of the interpolation method on Kinects v1 data.

4.3.3 Conclusion

Projecting a reconstructed 3D point in a virtual camera and interpolating the resulting image is actually
very similar to the pixel warping method mentioned in Section 2.3. The di�erence here is that we compute
the 3D world coordinate of the point before reprojecting it in the virtual camera. Thus, we can get the
depth information to know which pixel from one image should overwrite a pixel of the other image.

Moreover, we only perform the interpolation once all the information in the image is available. In [22],
they need to compute an interpolation every time a pixel is moved and the pixels have to be moved in a
certain order to prevent occlusions. Here, the depth map enables us to solve both these issues at the same
time: we can interpolate all the image at once in any order, without creating occlusions.

One reason why they probably did not go through the world coordinates is that they wanted a simple
and e�cient hardware implementation since the hardware performances were much lower at the time when
that paper was published.

4.4 Colouring points

For more realism, I tested several methods to colour the 3D points from the colour camera images. To
refer to them more easily, I named them A to E. In this section, I interpolated the images got with the
interpolation methods for a better visualisation of the results.

4.4.1 Kinect colour camera (Method A)

The simplest method consists in picking the colour of the point cloud reconstructed from one Kinect depth
map in the RGB image output by the same Kinect. It is easy to implement, fast and with this method,
colours of a non-visible object do not appear. The only issue is that two neighbouring 3D points belonging
to the same surface but captured by di�erent Kinects can be captured with a di�erent lighting depending
on the orientation of the camera with respect to the normal of the observed surface. This issue can appear
when there is a specular re�ection on the object, for example on the green cone and the blue sphere on
Figure 29a and this is mainly an issue when a lot of cameras are used (Figure 29b).

To prevent this lighting issue, it makes sense to try colouring neighbouring points with the same RGB
image. The question then is, what is the best colour camera to do it.

4.4.2 Closest colour camera (Method B)

The �rst solution I tested is to colour all of the point clouds with the colour camera the closest to the
virtual camera (in angle). To do so, the closest camera is selected and all the 3D points reconstructed
from all the Kinects are projected in it to get their colours. The results are shown in Figure 30.
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(a) 4 cameras (b) 20 cameras (c) Ground truth

Figure 29: Here each 3D point was coloured using the RGB image of the Kinect that captured the point.
Figure 29a was reconstructed using 4 cameras and Figure 29b using 2D cameras. Figure 29c is the same
point of view (virtual camera at 45◦) captured on Blender.

(a) 4 cameras (b) 20 cameras (c) Ground truth

Figure 30: Here each 3D point was coloured using only the colour camera the closest to the virtual camera
for 4 and 20 cameras.

35



This suppresses the issue of the �specular noise� visible with the previous method and the sphere shows
correct light re�ection when there are enough cameras, but another issue appears. When the background
is occluded by an object for the colour camera chosen, then those points of the background will get the
colour of the occluding object as illustrated by Figure 32. For example, in Figure 30a, for the colour
camera used (the one on the left of the camera), the green cone occludes the red box, so in the virtual
camera point of view, the points of the box that were occluded have been coloured in green. This can be
prevented by storing, for each colour, the position of the 3D point associated with this colour as explained
in method D.

4.4.3 Closest colour camera per pixel (Method C)

Method B can be improved by selecting the closest camera for each point. To do so, for each 3D point,
I compute and compare for each camera i the angle between the three points: virtual camera, 3D point,
colour camera. Then I pick the colour camera with the smallest angle, which gives the images Figure 31.

(a) 4 cameras (b) 20 cameras (c) Ground truth

Figure 31: Each 3D point is coloured with the colour camera that has the best point of view on it for 4
and 20 cameras.

The same issues than before can be observed on Figure 31a, the blue and yellow are even inverted on
the triangle. However, the result becomes very good when the number of cameras is increased and Figure
31b is hard to di�erentiate from the ground truth.

4.4.4 Weighted sum of colours (Method D)

A widely used reconstruction method in image-based rendering is through weighted interpolation of nearby
captured light rays [5,15,24]. In [26], Zhang uses this method in a setup similar to ours. The di�erence is
that they observe a surface while we observe a point cloud, so some light rays in our case come from the
background and should not be considered but we already solved that with the depth map.

The other di�erence is that we have occlusions, which leads to the issues seen in the two last meth-
ods. Not to mix colours from the foreground and the background like in Figure 34c, we need to reject
a camera when the point we want to colour is occluded in its view. We stored for each colour the 3D
point it corresponds to. Thus, to each colour pixel of the RGB image of a Kinect k imc{k}(u, v) corre-
sponds a pixel on the depth map imd{k}(u, v) which corresponds to a 3D point X{k}(id). Thus, before
using the colour imc{k}(u, v) to colour a point X, I can check that X{k}(id) is close enough to X, i.e.
dist(X{k}(id), X) is more little than the maximum distance between two neighbouring points (Figure 32).

To do so I have to set a margin to decide whether the points are close enough or not, because a point
of space sampled by two di�erent depth cameras will not have the same 3D coordinates as shown in Figure
33. Setting δ = lmax works �ne. If this margin is too wide, colours of di�erent depth of the scene are
mixed.

A weight is then computed for each colour by (37) like in [26] and the pixel where the point projects
is coloured by the weighted sum of the usable colours.

weights(camid) = 1/(camangle(camid) + ε) (37)
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virtual 

camera

capture 

camera 1

capture 

camera 2

Figure 32: Top view of the scene used for the rendering. Here, by projecting the point x in camera 1, we
get the colour green while the virtual camera should see a red pixel. To prevent this, the positions x1 and
x2 are associated respectively to the colours c1 and c2 and a colour ci is used only if x and xi are close
enough.

.

virtual 

camera

Figure 33: The surface represented by the dark line is sampled by two depth cameras (green and red).
The points sampled by the cameras are respectively green and red and do not superimpose exactly on the
surface.

.
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Where camid is the index of the colour camera considered and camangle the angle (virtual camera, 3D point,
color camera). ε = 0.0001 is there to limit the weight when the angle is close to zero.

The Matlab code for this method is commented in Appendix D.

On Figures 34b and 34d, we can see that the light re�ection is much smoother in the generated image
than in the ground truth, but the main advantage of this method is that the lighting remains consistent
from one point of view to another. Indeed, while rotating around the scene, the are no jump between the
colours from one frame to the next one which gives a more natural render.

(a) 4 cameras (b) 20 cameras (c) 20 cameras, no depth
comparison before using
the colour from a camera

(d) Ground truth

Figure 34: Method mixing the colours of several cameras for 4 and 20 cameras.

4.4.5 Using points normal (Method E)

Another idea to make the lighting consistent between two close viewpoints is to colour the object with
regard to the object geometry instead of the virtual camera position. To do so, the idea is to associate
a normal to each point and pick the colour camera according to the angle between the normal and the
colour camera's optical axis.

Each 3D point corresponds to a pixel of a depth map. The 3D points corresponding to the neighbouring
pixels can be used to compute the normal to the point. Then, when a point is reprojected in the virtual
camera, I can use its normal to pick the closest colour camera. But by colouring each point according
to the absolute value of its normal, I get Figure 35a which shows mainly three normal values coloured in
blue, red and green. This can be explained by observing the point cloud Figure 36. So, to get the normal
to the real surface, I blurred the normal map obtained to get a mean normal for each point (Figure 35b).
Then, I look in the blurred normal map of the virtual camera to pick the colour camera to colour the
projected point.

(a) Normal map of the virtual camera (b) Blurred normal map.

Figure 35: The point clouds are reprojected on the virtual camera and each point is coloured according
to its normal to get the normal map Figure 35a. This normal map is then interpolated (using the same
method than for the RGB image) and a Gaussian blur of width 50 pixels and height 30 pixels is applied
to get Figure 35b.

With this method, the colours should remain the same from one point of view to the other. However,
because of the e�ect shown in Figure 36, the normal associated to a point depends on the capture point
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capture 
camera

Figure 36: Top view of a depth camera sampling a tilted surface. Only three di�erent normal values are
computed.

.

of view and the colours and the normal map is computed and blurred from the virtual camera point of
view so the colour will still change when the observer moves.

To get an interesting result, the normal to the points should be determined more accurately by con-
sidering for example the 10 neighbouring points to compute the normal instead of only two neighbouring
points.

4.4.6 Conclusion

To conclude, we have to kinds of methods. With methods A and E, the colouration does not depend on
the observer position which enables more consistent lighting when moving around the scene but in method
E, the light re�ection would remain the same from every point of view which is not very natural and with
method A, the number of cameras must be limited and there must be no strong specularities on objects to
get a visually satisfying result. Methods B, C and D deal better with light re�ection but would be more
adapted to render only one image o�-line because they are expensive (Table 5) and the colours can jump
from one value to another only by moving the virtual camera of some degrees.

Camera number Method A Method B Method C Method D
4 14s 17s 56s 61s
8 31s 39s 3mn15 3mn6
16 1mn5 1mn23 10mn11 8mn23

Table 5: Execution time of each colouring method for di�erent number of cameras on the synthetic
dataset.

For the real-time rendering we will use the Method A to pick the colours since it is the easiest to
implement. Indeed, one Kinect needs then only one colour texture and one colour camera calibration.

5 Real-time rendering

As seen in part 2, numerous techniques exist to generate a 3D mesh from a point cloud, but I looked for a
more straightforward way to render the calibrated Kinect's data in real-time and as realistic as possibles,
using directly the point cloud.

The idea is to represent each point of the cloud captured by a Kinects by a quad of a certain size such
that an observer sees no holes between points. To do so I relied on the calculations made in Section 4.3.1.

This has been implemented in the game engine Unreal Engine 4 (UE4).
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5.1 Theoretical study

I �rst simulated the creation of quads in Matlab on Kinect v1 data to test di�erent size algorithms and
the results. Since Matlab can not plot a point cloud as quads of varying size, I only associated a quad size
to each point and I computed the size of the reprojection on the virtual camera in pixels. Then, when
I project a point in the virtual camera, instead of colouring one pixel in the target image, I coloured its
neighbouring pixels too, using the computed size to know how many pixels to write and the depth map
to decide whether I overwrite a pixel or not.

I �rst used the maximum size sw =
√

∆d2 + l2 established in Section 4.3.1 but this gave quads far
too big (Figure 38b) since it corresponds to the worst case and the depth steps are much bigger than the
spacing caused by the image resolution (37).

To take this into account, I interpolate the size sw(d) between lc(d) and the maximum size

√
∆d(d)

2
+ l(d)2

according to the angle β between the capture camera and the virtual camera such that when β = 0◦,

sw(d, 0◦) = lc(d), and when β = 45◦, sw(d, 45◦) =

√
∆d(d)

2
+ l2 (Figure 37). d corresponds to the dis-

tance between the point and the camera which captured it. This is quite an approximative calculation
but it gives satisfying results as shown in Figure 38c.

capture camera

virtual camera

Figure 37: The spacing between two points depends on the depth sampling step ∆d and the lateral spacing
due to the depth image resolution l.

Figure 38 shows that with the adapted quad's size, the result is comparable to the result by interpo-
lation and there are practically no holes in the image. Figure 39 shows several points of view between the
capture Kinects generated with this method.

5.2 Coding the Kinect's data

From there, we could use a second Kinect v2 so the renderer has been adapted to this version since its
performances are better.

In order to pack the data output by the Kinect for each frame, the RGB image, IR and depth image
are stored in one 24 bits PNG image. The colour image uses 8 bits per colour channel so 24 bits per pixels.

The depth values output by Kinect v2 are 16 bits �oating point values giving the depth in millimetres.
To write those values in the image, we need to distribute the bits between at least two colour channels. To
make the depth values easier to decode in Unreal Engine 4, those values are converted to 32 bits unsigned
integers. Indeed, the depth resolution goes from 0.5 mm to 1 mm and the depth values from 0.5 m to
4.5 m, so the depth values in micrometres go from 500 µ to 4.5 · 106µ. We have 222 < 4.5 · 106 < 223 so
a depth value can be stored in 3 bytes. The most signi�cant byte is stored in the red channel, then the
others in the green and blue channels. When the depth image is read by UE4 as a texture, it gives an 8
bits �oating point value between 0 and 1 for each channel (r, g, b). The depth value can then be computed
through the equation: depth(mm) = (r · 224 + g · 216 + b · 28)/1000.

Thus, the Texture Figure 40 is given to UE4 and the colour image and depth map are extracted from
it according to their position and size in the texture.
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(a) Image obtained by simply projecting the points. (b) Quads size computed from the capture distance d.

(c) Quads size computed from the capture distance d
and β.

(d) Interpolation of Figure 38a as explained in section
4.3.2.

Figure 38: This Figure shows the image generated with di�erent methods for a virtual camera placed
between the two real Kinects.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 39: Images generated for several positions of the virtual camera using quads of varying sizes.
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Figure 40: Input texture for the renderer in UE4. The texture contains the colour image, the infra-red
image and the depth map.

.
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5.3 Implementation in Unreal Engine 4

To get a real-time rendering, a good approach is to use texture lookups since they can be done really fast
by the GPU. I used an implementation of a depth map render in Unreal Engine 4, which, from a texture
(image or video) containing a colour image and a grayscale depth map (Figure 41a), renders a quads cloud
(Figure 41b) thanks to an orthographic projection.

(a) Input video, the colour image is on the left, the depth image is on the
right.

(b) The observer can move around
the cube and get closer or further.

Figure 41: Result given by the initial UE4 renderer

The data of a colour camera and a depth camera can be rendered by using a dynamic mesh and a
material. I had to insert the calibration data to compute a pinhole projection instead of a planar projection
and handle the distortions. To do so we implemented a Matlab function to write the calibration parameters
of a pair of colour camera and depth camera in an XML �le and a function to read this �le and store the
values in the material parameters.

The mesh is a grid of in�nitesimal quads built dynamically according to the input depth map size,
where each quad represents a pixel of the depth map. The material applied to this mesh will give a colour
to each quad, move its centre at a speci�c position and move the four vertices that constitute the corners
of the quads such that the quad faces the virtual camera.

The �nal pipeline implemented in UE4 is represented in Figure 42 and 43.

Mesh in
object space

(cm)

(cm)

Position of one quad
(4 points at the same 

position)

Depth texture

XYZ Lookup

multiply

calibration
parameters

UV0 texure coordinates 
of each quad point

Quad's position

add Vertex position

scale the quad
to prevent holes

Figure 42: For each vertex of the quads grid, a world position is computed.
.

The material applies a position and a color to each vertex of the mesh. On �gure 42, a vertex is
highlighted in red as example.
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calibration
parameters

ColorDistoLookup

Color texture

Vertex Color

Quad's position

Figure 43
For each vertex of the quads grid, a world position is computed, from this world position, a colour is

computed.

The (X,Y ) position of the points in the mesh will be used to pick the corresponding pixels (ud, vd) in
the depth map. From those coordinates, we can get the depth value d by look up in the depth texture
and the corresponding normalised depth camera coordinate (xdn, y

d
n, 1) in the texture XYZLookup. This

texture is generated using the depth camera projection and distortion parameters. Indeed, for each depth
map pixel (ud, vd) we can compute the corresponding point (xdn, y

d
n) and this texture computation only

needs to be done once before rendering and not for each pixel of each new frame. By multiplying this
vector by the depth d we get the point's depth camera coordinate (xd, yd, zd) = d · (xdn, ydn, 1). This point
can then be transformed into world coordinates thanks to the depth camera extrinsic parameters to get
(xw, yw, zw).

To get the colour of this point, it must be reprojected in the colour camera image thanks to the colour
camera calibration parameters. To handle the colour camera distortion, I use a texture lookup as well. I
generate once and for all a texture ColorDistoLookup such that ColorDistoLookup(u, v) = (uk, vk) where
(uk, vk) are the distorted image coordinates of the point. Finally, I use those values to pick up the colour
in the colour texture.

This is done for each point of the mesh. Four points of one quad correspond to the same pixel and
have the same position (X,Y ) (since the quad's size is zero). So the four points will get the same colour.
Now we need to rearrange those four points such that they form a quad facing the virtual camera. This is
done by association textures coordinates (u0, v0) to each point of a quad. When building the mesh, each
corner of a quad gets 2D coordinates among (1, 0), (1, 1), (0, 1) and (0, 0). Those coordinates can then
be used to move each vertex along the virtual camera's up and right vectors. The quad is then scaled
according to the distance d at which it was captured.

The blueprint code of the material is attached in Appendix E.

5.4 Results

The �nal material in UE4 can be used to render a point cloud for each Kinect. Figure 44 shows the render
of the scene captured by the setup A seen in part 3.4.3. An object for each Kinect and placed in the
centre of the scene and the described material is associated with it, we can see that the two point clouds
still superimpose. However the visual result is not so good because of the low depth resolution of Kinect
v1 and the bad exposition on the camera. The non-consistency of the colours between the point clouds
could be solved by using external cameras instead of the Kinect own colour camera and here the quad's
sizes is here adapted to Kinect v1 so the quads can not �ll the holes between points.

The ideal set up for this renderer would be several Kinects v2 and external RGB cameras, unfortunately
we missed the hardware to perform a simultaneous capture with several Kinects v2. Indeed, Kinect v2
has been implemented in IP Studio but as said in part 2.1.2, each Kinect v2 needs its own computer to
work and IP Studio could not be installed successfully on the available hardware.

However I could test the rendering of data provided by one Kinect v2 which gave me Figure 45 and
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Figure 44: Visualisation of Kinect v1 data in UE4.

46.

Figure 45: Visualisation of one Kinect v2 data in UE4.

Figure 46: Visualisation of one Kinect v2 data in UE4.
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On Figure 45 we can see that the result is much better with the Kinect v2, the surfaces have a better
resolution and we can see no holes in the plane surface thanks to the quads.

Figure 46 show the level of details that can be achieved on a face using only the Kinect v2 without
external colour camera.

With several Kinects v2, and a good calibration, we could also �ll the gaps caused by occlusion and
with external colour cameras, the colour would �t between two superimposing point cloud for a more
realistic result.

6 Conclusion

In this project, a capture system consisting of several Kinects has been setup and several rendering tech-
niques have been tested to �nally implement one of them in an existing game engine to visualise the data
captured by the system. The calibration of several Kinects has been implemented in Matlab and any
captured sequence can now be rendered in Unreal Engine 4. A manual (Appendix F) has been written
to detail the setup requirements, the calibration process and how to import the data in theUE4project to
visualise a sequence and thus enable anyone to use the tools developed in this thesis.

The provisional planning has been followed on the whole but some unplanned stages had to be added.
Indeed, we did not know precisely from the start which approach would be followed for the rendering part,
so the planning has been re�ned after researching on the subject. Some delays have also been experienced
while waiting for licences and hardware to start some parts of the project like the rendering on UE4 which
requires speci�c software. The planning �nally followed is in Appendix B.
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A

Projected Gantt Diagram
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Figure 47: Gantt diagram initially projected
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B

Final Gantt Diagram
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Figure 48: Gantt diagram �nally followed
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C

Matlab implementation of the Levenberg-Marquardt algorithm

1 f unc t i on [ xf , r , jac , cnt ] = LMFsolve ( vararg in )
2 % LMFSOLVE Solve a Set o f Nonl inear Equations in Least−Squares Sense .
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % [ Xf , Res , CNT] = LMFsolve (FUN,Xo , Options )
6 % FUN i s a func t i on handle or a func t i on M− f i l e name that eva lua t e s
7 % m−vec to r o f equat ion r e s i dua l s ,
8 % Xo i s n−vec to r o f i n i t i a l gue s s e s o f s o lu t i on ,
9 % Options i s an op t i ona l s e t o f Name/Value pa i r s o f c on t r o l parameters

10 % of the a lgor i thm . I t may be a l s o p r e s e t by c a l l i n g :
11 % Options = LMFsolve ( ' de fau l t ' ) , or by a s e t o f Name/Value pa i r s :
12 % Options = LMFsolve ( 'Name' , Value , . . . ) , or updating the Options
13 % se t by c a l l i n g
14 % Options = LMFsolve ( Options , 'Name' , Value , . . . ) .
15 %
16 % Name Values { d e f au l t } Desc r ip t i on
17 % ' Display ' i n t e g e r Display i t e r a t i o n in fo rmat ion
18 % {0} no d i sp l ay
19 % k d i sp l ay i n i t i a l and every k−th i t e r a t i o n ;
20 % 'FunTol ' {1e−7} norm(FUN(x ) ,1 ) s topping t o l e r an c e ;
21 % 'XTol ' {1e−7} norm(x−xold , 1 ) s topping t o l e r an c e ;
22 % 'MaxIter ' {100} Maximum number o f i t e r a t i o n s ;
23 % ' ScaleD ' Sca l e c on t r o l :
24 % value D = eye (m) ∗ value ;
25 % vector D = diag ( vec to r ) ;
26 % { [ ] } D(k , k ) = JJ (k , k ) f o r JJ (k , k ) >0, or
27 % = 1 otherwise ,
28 % where JJ = J . '∗ J
29 % Not de f ined f i e l d s o f the Options s t r u c tu r e are f i l l e d by de f au l t va lue s .
30 %
31 % Output Arguments :
32 % Xf f i n a l s o l u t i o n approximation
33 % ( Ssq sum of squares o f r e s i d u a l s )
34 % Res r e s i d u a l s
35 % Jac Jacobian in Xf
36 % Cnt >0 count o f i t e r a t i o n s
37 % −MaxIter , did not converge in MaxIter i t e r a t i o n s
38

39 % Miros lav Balda ,
40 % balda AT cdm DOT cas DOT cz
41 % 2007−07−02 v 1 .0
42 % 2008−12−22 v 1 .1 ∗ Changed name o f the func t i on in LMFsolv
43 % ∗ Removed part with wrong code f o r use o f a n a l y t i c a l
44 % form f o r assembl ing o f Jacobian matrix
45 % 2009−01−08 v 1 .2 ∗ Changed sub funct ion p r i n t i t .m f o r b e t t e r one , and
46 % modi f i ed i t s c a l l i n g from i n s i d e LMFsolve .
47 % ∗ Repaired a bug , which caused an i n c l i n a t i o n to
48 % i s t a b i l i t y , in charge o f s lower convergence .
49 %Marilyn Ke l l e r
50 %2016−21−08 S imp l i f i c a t i o n to get an LM algor i thm implementation
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52

53 %%%%%%%%%%%%%%
54 % PARSE OPTIONS
55 %%%%%%%%%%%%%%
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56

57 % Defau l t Options
58 i f narg in==1 && strcmpi ( ' d e f au l t ' , va rarg in (1 ) )
59 xf . Display = 0 ; % no pr in t o f i t e r a t i o n s
60 xf . MaxIter = 100 ; % maximum number o f i t e r a t i o n s a l lowed
61 xf . ScaleD = [ ] ; % automatic s c a l i n g by D = diag ( diag (J '∗ J ) )
62 xf . FunTol = 1e−7; % t o l e r a c e f o r f i n a l f unc t i on value
63 xf . XTol = 1e−4; % to l e r an c e on d i f f e r e n c e o f x−s o l u t i o n s
64 re turn
65

66 % Updating Options
67 e l s e i f i s s t r u c t ( vararg in {1}) % Options=LMFsolve ( Options , 'Name' , ' Value ' , . . . )
68 i f ~ i s f i e l d ( vararg in {1} , ' Display ' )
69 e r r o r ( ' Options St ruc ture not c o r r e c t f o r LMFsolve . ' )
70 end
71 xf=vararg in {1} ; % Options
72 f o r i =2:2 : nargin−1
73 name=vararg in { i } ; % Option to be updated
74 i f ~ i s c h a r (name)
75 e r r o r ( ' Parameter Names Must be S t r i ng s . ' )
76 end
77 name=lower (name( i s l e t t e r (name) ) ) ;
78 value=vararg in { i +1}; % value o f the opt ion
79 i f strncmp (name , 'd ' , 1 ) , x f . Display = value ;
80 e l s e i f strncmp (name , ' f ' , 1 ) , x f . FunTol = value (1 ) ;
81 e l s e i f strncmp (name , ' x ' , 1 ) , x f . XTol = value (1 ) ;
82 e l s e i f strncmp (name , 'm' ,1 ) , x f . MaxIter = value (1 ) ;
83 e l s e i f strncmp (name , ' s ' , 1 ) , x f . ScaleD = value ;
84 e l s e d i sp ( [ 'Unknown Parameter Name −−> ' name ] )
85 end
86 end
87 re turn
88

89 % Pair s o f Options
90 e l s e i f i s c h a r ( vararg in {1}) % check f o r Options=LMFSOLVE( 'Name' , Value , . . . )
91 Pnames=char ( ' d i sp l ay ' , ' f un t o l ' , ' x t o l ' , ' maxiter ' , ' s c a l ed ' ) ;
92 i f strncmpi ( vararg in {1} ,Pnames , l ength ( vararg in {1}) )
93 xf=LMFsolve ( ' d e f au l t ' ) ; % get d e f au l t va lue s
94 xf=LMFsolve ( xf , va ra rg in { : } ) ;
95 re turn
96 end
97 end
98

99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
100 % LMFSOLVE(FUN,Xo , Options )
101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
102

103 FUN=vararg in {1} ; % func t i on handle
104 i f ~( isvarname (FUN) | | i s a (FUN, ' funct ion_handle ' ) )
105 e r r o r ( 'FUN Must be a Function Handle or M− f i l e Name . ' )
106 end
107

108 xc=vararg in {2} ; % Xo
109

110 i f nargin>2 % OPTIONS
111 i f i s s t r u c t ( vararg in {3})
112 opt ions=vararg in {3} ;
113 e l s e
114 i f ~ e x i s t ( ' opt i ons ' , ' var ' )
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115 opt ions = LMFsolve ( ' d e f au l t ' ) ;
116 end
117 f o r i =3:2 : s i z e ( vararg in , 2 )−1
118 opt ions=LMFsolve ( opt ions , vararg in { i } , vararg in { i +1}) ;
119 end
120 end
121 e l s e
122 i f ~ e x i s t ( ' opt i ons ' , ' var ' )
123 opt ions = LMFsolve ( ' d e f au l t ' ) ;
124 end
125 end
126

127 %%%%%%%%%%%%
128 %I n i t i a l i s a t i o n
129 %%%%%%%%%%%%
130

131 x = xc ( : ) ;
132 l x = length (x ) ;
133

134 r = f e v a l (FUN, x ) ; % Res idua l s at s t a r t i n g po int
135 %~~~~~~~~~~~~~~~~~
136 S = r '∗ r ;
137 epsx = opt ions . XTol ( : ) ; %minimum step value
138 ep s f = opt ions . FunTol ( : ) ;
139 i f l ength ( epsx )<lx , epsx=epsx∗ ones ( lx , 1 ) ; end
140 J = f i n j a c (FUN, r , x , epsx ) ;
141 %~~~~~~~~~~~~~~~~~~~~~~~
142 nfJ = 2 ;
143 A = J . '∗ J ; % System matrix
144 v = J . '∗ r ;
145

146 D=eye ( s i z e (A) ) ;
147

148 Rlo = 0 . 2 5 ;
149 Rhi = 0 . 7 5 ;
150 l =0.01; l c =.75; i s =0;
151 cnt = 0 ;
152 i p r = opt ions . Display ;
153 p r i n t i t_ l e s s ( ipr ,−1) ; % Table header
154 d = opt ions . XTol ; % vecto r f o r the f i r s t c y c l e
155 maxit = opt ions . MaxIter ; % maximum permitted number o f i t e r a t i o n s
156

157

158 %%%%%%%%%%%%
159 %Main i t e r a t i o n c i r c l e
160 %%%%%%%%%%%%
161

162 whi le cnt<maxit && . . . %
163 any ( abs (d) >= epsx ) && . . .
164 any ( abs ( r ) >= eps f )
165 d = (A+l ∗D)\v ; % negat ive s o l u t i o n increment
166

167 xd = x−d ;
168 rd = f e v a l (FUN, xd ) ;
169 % ~~~~~~~~~~~~~~~~~~~
170 nfJ = nfJ+1;
171 Sd = rd . '∗ rd ;
172 S = r . '∗ r ; % pred i c t ed reduct i on
173
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174 i f Sd<S
175 l=l /10 ;
176 e l s e
177 l=l ∗10 ;
178 end
179

180 cnt = cnt+1;
181 i f i p r~=0 && (rem( cnt , i p r )==0 | | cnt==1)
182 p r i n t i t_ l e s s ( ipr , cnt , nfJ , S , x , d , l , l c ) % pr in t the i t e r a t i o n r e s u l t s
183 end
184

185 i f Sd<S
186 S = Sd ;
187 x = xd ;
188 r = rd ;
189 J = f i n j a c (FUN, r , x , epsx ) ;
190 % ~~~~~~~~~~~~~~~~~~~~~~~~~
191 nfJ = nfJ+1;
192 A = J '∗ J ;
193 v = J '∗ r ;
194 end
195 end
196

197 %Print the reason f o r stopping
198 i f cnt>maxit
199 f p r i n t f ( ' LMFsolve stopped because max number o f i t e r a t i o n reached . \n ' ) ;
200 e l s e i f any ( abs (d) <= epsx )
201 f p r i n t f ( ' LMFsolve stopped because s o l u t i o n converged . \n ' ) ;
202 e l s e i f any ( abs ( r ) <= eps f )
203 f p r i n t f ( ' LMFsolve stopped because r e s i d u a l low enough . \n ' ) ;
204 end
205

206 xf = x ; % f i n a l s o l u t i o n
207 i f cnt==maxit
208 cnt = −cnt ;
209 end % maxit reached
210 rd = f e v a l (FUN, x f ) ;
211 nfJ = nfJ+1;
212 Sd = rd . '∗ rd ;
213 j a c=J ;
214 i f ipr , d i sp ( ' ' ) , end
215 p r i n t i t_ l e s s ( ipr , cnt , nfJ , Sd , xf , d , l , l c ) %Print the r e s u l t s
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D

Matlab code of the colouring method C

1

2 %Use the po in t s captured by the cameras in the same
3 %s em i c i r c l e as the v i r t u a l camera
4 f o r k=f i nd ( anglevc<=pi /2)
5

6 cvp=X{k } ( : , x id )−vca l i b . r t {1} ; %vecto r from v i r t u a l camera to po int
7 %I f a po int was a l r eady r ep r o j e c t ed in the same p ixe l , only con s id e r the
8 %new po in t s i f i t i s c l o s e r to the v i r t u a l camera than the former one
9 i f cvp<dmap( i , j )

10

11 %Color g iven by each camera
12 col_vect=ze ro s (3 , ccount ) ;
13 %Angle o f each camera to the v i r t u a l camera
14 angle_cams=ze ro s (1 , ccount ) ;
15 %Weight a s s o c i a t ed to each c o l o r
16 col_weights=ze ro s (1 , ccount ) ;
17

18 %Only con s id e r the cameras in the s em i c i r c l e
19 f o r cam=f ind ( anglevc<=pi /2)
20

21 %Compute the weights
22 cp=X{k } ( : , x id )−c a l i b . r t {cam} ; %vecto r from camera to po int
23 angle_cams (cam)=atan2 (norm( c r o s s ( cp , cvp ) ) , dot ( cp , cvp ) ) ;
24

25 %Do not use c o l o r s o f behind the su r f a c e
26 i f c o l_d i s t {k}{cam}( xid ) < depth_prec i s ion
27 col_weights (cam)=1/(0.00001+angle_cams (cam) ) ;
28 end
29

30 % Store the c o l o r a s s o c i a t ed to the camera . I f non−va l i d co lo r ,
31 % ignore t h i s camera by s e t t i n g the weight to zero
32 i f ~ i snan ( c o l {k}{cam}( xid , : ) )
33 col_vect ( : , cam)=co l {k}{cam}( xid , : ) ' ;
34 e l s e
35 col_weights (cam)=0;
36 end
37 end
38

39 %Normalize the weight c o e f f i c i e n t s
40 col_weights=col_weights /sum( col_weights ) ;
41

42 %Compute the Weighted sum of the c o l o r s and co l o r the p i x e l
43 img ( i , j , : )=sum( ( col_vect ∗diag ( col_weights ) ) ,2 , ' omitnan ' ) ;
44

45 %Write the d i s t ance from point to v i r t u a l camera in the depth map
46 dmap( i , j )=cvp ;
47

48 end
49 end
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E UE4 Blueprint code
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Figure 49: Outputs depth camera coordinates in function of the vertex coordinates in the mesh.
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Figure 50: The block's input is the depth camera coordinates and the block transforms it in world
coordinates. 59



Figure 51: The block's input is the world coordinates and the block transforms it in colour camera image
coordinates. 60



Figure 52: The block takes the depth of the point in depth camera coordinates into input and outputs
the o�set to apply to the vertex to scale and orientate the quad properly.
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F Joint calibration and rendering manual
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Calibration and Rendering with several 
Kinects and external colour cameras 

  
Manual 

 
 
This manual aims to explain step by step how to calibrate several Kinects and possibly some                               
external cameras jointly with a calibration toolbox on Matlab adapted from the one provided                           
by Herrera (http://www.ee.oulu.fi/~dherrera/kinect/) and then render a captured sequence in                   
Unreal Engine 4.  

I Acquisition of the data 

1 Setup 
 
The Kinects used should be the second version (Kinect for Xbox one). They can capture a                               
depth range from 0.5m to 4m so they should be placed on a circle of radius about 2 meters                                     
around the scene to capture, with a reasonable angle between two Kinects (around 45                           
degrees).  
If you want to use external colour cameras to use them instead of the Kinect internal colour                                 
camera, you should place them close to the Kinects. 
The Nk Kinects will be numbered from 0 to Nk1 and the Nc external cameras from Nk to                                   
Nk+Nc1. 
 
To calibrate the Kinects, a checkerboard with known dimensions must be captured by the                           
Kinects with different positions. For example, you can use a big board (about 2x1 m) with an                                 
8x6 A3 checkerboard stuck on it like the one used in the images below.  
 
To know how far apart you can place the Kinects, place the checkerboard in front of two                                 
neighbouring Kinects while displaying their RGB and Depth outputs. You should be able to                           
tilt the checkerboard with different angles and bring it closer and further to the Kinects                             
without its surface disappearing from the depth image and the black squares should be                           
differentiable to the white squares on the RGB image. If, because of light reflection, you can                               
not move the checkerboard in several positions, you should either bring the Kinects closer or                             
try using another checkerboard. 
Doing this will also give you an idea of how much you can tilt the board with respect to a                                       
Kinect such that it is still seen properly.  
 



2 Capture 
 
10 to 20 different checkerboard positions should be sufficient to calibrate the Kinects. The                           
checkerboard must be captured closer or further to the Kinects with different inclination. The                           
more different the positions are, the better the calibration will be. 
If you want to correct the depth distortion, you should also capture between two and five                                 
images of the board, only with the depth camera and such that the depth camera only sees                                 
the board. 
 
The next images show the depth maps captured by one Kinect for some possible                           
checkerboard positions. The first two depth maps have no corresponding RGB images and                         
are useful if you want to correct the depth distortion. 

 
 

There are some important things to check to get usable images. The checkerboard squares                           
must be easy to detect so try not to make it reflect some light toward the camera and do not                                       
tilt the board too much. Moreover, the checkerboard should be seen properly by at least                             
two neighbouring Kinects for most of the positions, otherwise, the joint calibration won’t                         
work properly. 
 
Also, note that the board does not need to be seen entirely but the checkerboard must be                                 
entirely visible on the RGB image to use this image. 
 
The images should be named starting from 0000c0.jpg and 0000d0.pgm, where the first                         
number is the number of the capture and the second is the Kinect or external RGB camera                                 
number. “c” correspond to an RGB image and “d” to a depth image. The format must be JPG                                   
for the RGB images and PGM for the depth images. The external RGB camera should                             
always be numbered after the Kinects. 
 
For example, if we have two Kinects and one external RGB camera and capture 12                             
positions, we should get the following files : 

● 0000c0 to 0011c0 and 0000d0 to 0011d0 for the first Kinect. 
● 0000c1 to 0011c1 and 0000d1 to 0011d1 for the second Kinect. 
● 0000c2 to 0011c2 for the external camera 

 
 



II Calibration 
 
In Matlab, go to the toolbox folder and add the following folders to the path: 
>> cd toolbox/v2.1/toolbox/ 

>> addpath('missing_fct/') 

>> addpath('../../../code_fs/toolbox/Diplomarbeit/') 

 
Launch kinect_calib_gui, a new window opens with each button launching a different                       
calibration step.  
>> kinect_calib_gui 

 

Launch each step in the order as described below. 
 

 

 
 

1 Select images 
Click on the Select images button and follow the instructions at the prompt. If you press                               
enter without writing a value, the default value in parenthesis will be used. 
 



 Enter the path to the folder containing the calibration images. 
 Enter the number of colour cameras (if you have 3 Kinects and one RGB camera it will be                                     
4). 
 Enter the number of depth cameras (if you have 3 Kinects and one RGB camera it will be                                     
3). 
 If the files name format differs from the expected one, enter the format you used (without                                 
quotation marks). 
 Enter then the vector of the images to use. Only use an image if the whole checkerboard is                                     
visible by the RGB camera and a sufficient surface of the board is visible by the depth                                 
camera.  
 
Example: 
>> Path to image directory ([]=current dir):>> ../office4/calib 
>> Number of color cameras ([]=3):2 
>> Number of depth cameras ([]=3):1 
>> Filename format for camera 1 images ([]='%.4dc0.jpg'): 

>> Filename format for camera 2 images ([]='%.4dc1.jpg'): 

>> Filename format for depth 1 images ([]='%.4dd0.pgm'): 

   26 plane poses found. 

>> Select poses to use for calibration ([]=all):[1,4,6,8:16] 

2 Select RGB corners 
An automatic corner detection is possible but requires the version 2.1 of OpenCV and before                             
launching Matlab, the path to the library must be added every time by entering in the                               
console:  
$ LD_LIBRARY_PATH=/usr/local/lib/opencv2.1:$LD_LIBRARY_PATH 
or equivalent. 
 
Click on the Select rgb corners Button and follow the instructions at the prompt: 
 
 Enter the size of the checkerboard quads in meters 
 If you use the automatic corner detector, you must specify the number of inner corners of                                 
the checkerboard. On the image below it would be 7 and 5. 
 The Corner finder window size can be left at 3 pixels but you can increase/decrease it if                                   
you have a better/worst image quality, 
 The Select poses line enables you to select the checkerboard only on                         

specific images. For example, if you realise once you are done that your                         

selection in images 5 and 9 are wrong, you can launch a selection again                           

by clicking on the Select images Button and in Select images to process enter                           

[5,7] to only reprocess those images. 

 
Example: 
>> Square size ([]=0.06m): >> 

>> Use automatic corner detector? ([]=true, other=false)? >> 

>> Inner corner count in X direction: >> 7 



>> Inner corner count in Y direction: 5 
Camera 1 

>> Corner finder window size ([]=3px):   

>> Select images to process ([]=all): 

 
 
 When you have to select the corners, select the inner corners. 
 

 
 

3 Select planes 
Click on the Select planes Button and follow the instructions at the prompt. In this part you                                 
must create a mask on the plane region of the board, so you should place points slightly                                 
inside the board and not select the corners of the checkerboard .  
You can place as many points as you want and can delete the last one placed with the ESC                                     
key. 
 

 
 



4 Initial estimation 
Clicking on the Initial estimation button launches the calibration of the RGB cameras. With                           
3 Kinects it takes about 30 seconds then the final errors are displayed. A reprojection error is                                 
given for each colour camera in pixels and should be much lower than 1 (0.20 pixels for                                 
example). 
 

5 Fixed initial depth camera  
Clicking on the Fixed initial depth camera initialises the depth camera parameters with the                           
known values for Kinect version one and refines them using the colour camera of the same                               
Kinect. With 3 Kinects it takes about 10 seconds. The errors are displayed just before the                               
parameters obtained and look like this: 
 
Stats after depth optimization with RGB camera: 

Color 1: mean=0.000000, std=0.205617 [0.011073,+0.012345] (pixels) 

Color 2: mean=0.000000, std=0.232996 [0.012547,+0.013988] (pixels) 

Color 3: mean=0.000000, std=0.297678 [0.016031,+0.017872] (pixels) 

Depth 1: mean=0.139493, std=2.386314 [0.004049,+0.004062] (disparity) 

Depth 2: mean=0.018600, std=1.850696 [0.003180,+0.003191] (disparity) 

Depth 3: mean=0.041492, std=2.330167 [0.007041,+0.007082] (disparity) 

 

The mean error should be very close to zero and the disparity error standard deviation                             
should be a couple of disparity units. 
 

6 Calibration 
This performs the joint calibration and can take quite a while (up to 30 minutes for 3 Kinects                                   
and the depth distortion correction). By unchecking “use depth distortion”, you decrease the                         
computation time.  

7 Save 
The Save button stores in a .mat file the calibration result but also all the calibration                               
variables like the path to the files, the corners positions, the selected plane and the initial                               
calibration, etc… So you can stop and save your calibration at any step to continue it later.                                 
This file can then be load with the Load button to get all the variables back. 
 
You can load the demo file ../office4/calib/all.mat to test the calibration steps and the                             
functions described in part 10. 
>> Calibration path or filename: ../office4/calib/calib.mat 
 
 



 

8 Check the calibration 
To check that the calibration gives good results, you can use it to reconstruct a point cloud                                 
from a calibration colour image and depth image and visualise it in Matlab with the function                               
plot_reconstruction. This also displays the computed position of the cameras. 
 
Example : 
>> plot_reconstruction(final_calib, dfiles, rfiles, dataset_path, 13) 

 

final_calib, dfiles, rfiles and dataset_path are four calibration variables that can be added                         
to the workspace by entering global_vars() at the prompt after finishing or loading a                           
calibration. final_calib is the name of the structure containing the calibration results, dfiles                         
and rfiles are the names of the colour and depth images used for the calibration and                               
dataset_path the path to those files. The last parameter is the index of the image to use to                                   
reconstruct a point cloud. All in all, if you used 10 checkerboard positions to do the                               
calibration, you can pick one of those captures (i.e. the corresponding colour image and                           
depth image) by entering an image index between 1 and 10. 
 
This function also displays the position of the cameras according to the calibration results.                           
The cameras (colour and depth) of one Kinect have the same hue and the depth camera is                                 
displayed darker than the colour camera.  

9 Export the calibration 
To be able to use the final calibration parameters in Unreal Engine 4, they have to be written                                   
in an XML file with the function: 
write_xml(calib, rcam_idx, dcam_idx, filename)  

 

calib is the calibration variable which can be added to the workspace by entering                           
global_vars() at the prompt. 
  
One file is needed for each point cloud, i.e. each Kinect. With two Kinects 0 and 1, two                                   
calibration files could be created with the lines: 
 
write_xml(final_calib,0,0,'calib_kinect0.xml') 

write_xml(final_calib,1,1,'calib_kinect1.xml') 

 
One depth camera gives the position of the points and a colour camera gives the colour of                                 
the points but we can colour the point cloud of one Kinect with an external colour camera. 
 
For example, if we have 2 Kinects (indexed 0, 1) and two external colour cameras (indexed                               
2, 3) with the camera 2 close to the Kinect 0 and the 3 close to the Kinect 1. We could                                         
generate two calibration files to create two point clouds coloured with the external colour                           
cameras with the following call:  



write_xml(final_calib,2,0,'calib_kinect0.xml') 

write_xml(final_calib,3,1,'calib_kinect2.xml') 

10 Useful functions 
You can get more information on each of those functions with the help command followed 
by the function name in Matlab. 
 
To test those functions on calibration results you can load the demo calibration with: 
>> do_load_calib('../office4/calib/all.mat') 
>> global_vars 
The calibration results are then in the final_calib variable. 
 

a) Functions to visualise and export the calibration results 
 
global_vars 

This file lists all the global variables used by the calibration toolbox. Run this file to link all 
variables to the current workspace and access the results. 
 
do_save_calib 

Saves the calibration input (corners & planes) data and results. 
 
do_load_calib  

Loads the calibration input (corners & planes) data and results. 
 
plot_reconstruction(calib, rfiles, dfiles, data_path, img_idx) 
Plots the reconstruction of a plane position from the calibration sequence and the calibration 
results. Also plots the position of the cameras found by the calibration and the expected 
position of the checkerboard as a red rectangle. 
 
plot_RGBDpointcloud(calib, rcam_idx, dcam_idx, data_path, img_idx) 
Plots a point cloud reconstructed from a colour and rgb image. 
 
plot_rcam(calib,rcam_idx,color) 
Plots the position of the colour camera indexed rcam_idx. 
 
plot_dcam(calib,dcam_idx,color) 
Plots the position of the depth camera indexed dcam dcam_idx. 
 
plot_checkerboard(calib,img_idx,color)  
Plots the expected position of the checkerboard in world space from a calibration image. 
 
dispmap2RGBdepthmap(source_file, dest_file) 



Loads a Kinect v1 disparity map output by libfreenect, converts it in an uint32 depth map in 
micrometres and writes it in a 3 x uint8 RGB image. The most significant byte is written in R 
and only R,G and B are used since the maximum depth is lower than 2^24 micrometres. The 
output corresponds to the input depth map expected by the UE4 Kinect renderer  (Part 2 of 
this manual). 
 
write_xml(calib, rcam_idx, dcam_idx, filename)  
Writes in an xml file the calibration results stored in the variable CALIB for a pair of colour 
camera index RCAM_IDX and depth camera DCAM_IDX. 
 
 

b) Functions to render the calibration results 
 
[img, dmap]=project_spec(final_calib) Projects the point clouds got from the data in a virtual 
camera placed between the two real Kinects, using the calibration data in FINAL_CALIB. 
The resulting image is written in IMG and the corresponding depth map in DMAP. This uses 
the data in ../office4/calib and to load the calibration data from ../office4/calib/all.mat.  
 
[img, dmap]=project_spec(final_calib, method) specifies a reprojection method, four are 
possible: 
METHOD= 

'none' Default method, simply reprojects each point in a pixel, the output image has 
then holes. 

'interpolate' The final image IMG with holes is interpolated using the built depth map 
DMAP thanks to the function interpolate_image. 

'quads_dist' Simulates the projection of a cloud of quads instead of a point cloud. 
Each quad is dimensioned in function of its distance to the camera that 
captured it 

'quads_dist_angle'  Same as 'quads_dist' but the quads size also depend on the 
virtual camera angle compared to the capture camera 

 
You can test those by entering: 
>> do_load_calib('../office4/calib/all.mat'); 

>> global_vars; 

>> [img,~]=project_spec(final_calib); 

>> imshow(img); 

>> [img,~]=project_spec(final_calib, 'interpolate'); 

>> imshow(img); 

 
img_int=interpolate_image(img,dmap,nb_pix_l,nb_pix_c,dstep,res) 
Interpolates the image IMG with white holes using its corresponding depth map DMAP. 
 



II Rendering in UE4 
 
The calibration of the cameras as XML files can be used in the game engine Unreal Engine                                 
4 to reconstruct a captured sequence in 3D and in realtime. First, open the                           
DepthMapRenderer project. You can modify an existing level (they are in the Map folder) or                             
create a new one (Files>new>Level). 

1) Add a point cloud 
Each Kinect point cloud will be represented by the actor DepthMapRenderer. So first for                           
each Kinect, create a DepthMapRenderer actor. Place it in the world at the location (0,0,0)                             
with a rotation of 90 degrees around the xaxis in the right Panel: 

 
Each DepthMapRenderer actor should be placed exactly this way so that the final point                           
clouds superimpose. 
 
You can render either a static scene from an image or a moving scene from a video.  
 

● If your input is a picture, just import it as a texture in Unreal. You then need to open                                     
the texture and set the Compression Settings to VectorDisplacementmap                 
(RGBA8) in the right panel. Without it, the depth map could be unusable because                           
compressed too much. Also, uncheck the box sRGB or the scene depth will appear                           
very noisy and scaled down. 

 

 
 



● If your Input is a video, you have to create a Media Texture from it. To do so create                                     
first a new Media Player by clicking on Add New in the content browser >                             
Miscellaneous > Media Player. 

 
Then open it and enter the path to your video in File or URL: 

 
Now a media Texture can be created by clicking on Add New in the content                             
browser > Material and Textures > Media Texture. Open it and set Media Player                           
to the one you just created. 

   
 

 

2) Create a new Material instance 
A DepthMapRenderer actor is basically made of a dynamic mesh and a material. The                           
material allows to place the points in space and colour them. The base material for this is                                 
M_DepthMap, you should find it in the content browser. To feed our images/ video and                             
calibration in this material, a new instance of this one must be created by clicking right on the                                   
material M_DepthMap > Create Material Instance. You will need to create one Material                         
Instance for each DepthMapRenderer actor so one for each Kinect. For example, the                         
Material Instance you just created can be named MI_DepthMap1 for the first Kinect. 
 
By opening the created Material Instance, you can see a list of parameters on the left side.                                 
Some of those have to be set as follows. 
 
ColorMapOffset: Set (R,G) to the position of the first pixel of the colour image in the Texture                                 
/ Media Texture you just created (values between 0 and 1). 
 



ColorMapScale: Set (R,G) to the size of the colour image in the Texture / Media Texture                               
with respect to the Texture size (values between 0 and 1). 
 
DepthMapOffset: Set (R,G) to the position of the first pixel of the depth image in the Texture                                 
/ Media Texture(values between 0 and 1). 
 
DepthMapScale: Set (R,G) to the size of the depth image in the Texture / Media Texture                               
with respect to the Texture size (values between 0 and 1). 
 
InputTexture: Select the Texture / Media Texture you created before 
 
For example, with the following Texture : 
 
We will set: 
ColorMapOffset: R=0, G=0 
ColorMapScale: R=0.5 G=1 
DepthMapOffset: R=0.5 G=0 
DepthMapScale: R=0.5 G=1 
 
 
 
 
 
 
 
 
The other parameters should not be modified, they will be set by reading the provided                             
texture and calibration file. (This is done when building the geometry, in the C++ class                             
ADepthMapRenderer which is located in Unreal           
Projects\DepthRenderer\Source\DepthRenderer.) 

3) Use the material 
Back in the level window, there are several properties to set to a DepthMapRenderer actor.                             
Select the actor in the World Outliner up right, then you can edit the parameters in the right                                   
window. 

 In Depth Texture Width and Depth Texture Height, specify the size of the depth                           
map in pixels. 

 In Base Material, select the Material Instance you created. 
 In RGB Texture Width and RGB Texture Height, specify the size of the colour                           

image in pixels. 
 In Calib File, set the path to your .xml calibration file generated with Matlab. Note                             

that the “\” in a path on window must be replaced by “/”. 
 



 
 
This done you can click on the arrow right to the Build button and click on Build Geometry                                   
(Current Level) to take the changes into account. 

 
Once a Kinect data has been added this way, the visualisation can be launched by clicking                               
on Play. 
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Abstract

The present master thesis studies the use of RGB and depth cameras to capture and render a scene.
A pair of calibrated RGB and depth camera provides a coloured point cloud. Using several calibrated
camera pairs around a scene gives information on the captured objects shape. This master thesis seeks to
setup such a capture system and render the data in a realistic way.

The rendering of point clouds implies several issues. The observer should not be able to see through an
object surface and the colours must be consistent. Di�erent techniques are applied and compared to solve
those issues. An interpolation technique to �ll the holes between the points gives satisfying results for an
o�-line rendering, while representing the point cloud as a cloud of quads of varying sizes is a good solution
for a real-time rendering. To colour the �nal point cloud, the information of several colour cameras can
be used for a more natural illumination of the scene.

Résume

Ce projet de �n d'étude fait l'étude de l'usage de caméras RGB et caméras de profondeur pour capturer
et visualiser une scène. Une paire de caméra couleur et profondeur permet de reconstruire un nuage de
point coloré. Utiliser plusieurs paires de telles caméras calibrées entre elles donne donc la forme des objets
capturées sous forme de points. L'objectif de ce projet est de mettre en place un tel système de capture
et de générer un rendu réaliste de ses données.

La visualisation d'un nuage de points amène plusieurs problématiques. L'observateur ne doit pas pou-
voir voir à travers une surface et les couleurs de l'objet doivent concorder sur toute sa surface. Plusieurs
techniques sont ici appliquées et confrontées a�n de résoudre ces problèmes. Une technique d'interpolation
pour combler l'espace entre les points donne un rendu satisfaisant mais long à générer, tandis que la
représentation des points par des carrés de taille variable constitue une bonne solution pour une visualisa-
tion réaliste en temps réel. Pour appliquer la couleur des caméras RGB au nuage de point, les informations
apportées par les di�érentes caméras peuvent être croisées a�n d'obtenir une illumination plus naturelle
de la scène.
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